Характеристика микрофлоры свежей, охлажденной и мороженой рыбы. Виды порчи и профилактические мероприятия. Микрофлора свежей рыбы.виды порчи рыбы

После того как рыбу умертвили, она теряет эластичность, как бы отвердевает, при этом без признаков порчи. Этот период следовало бы продлить своевременными и правильными действиями.

Только тогда мясо рыбы не потеряет своих натуральных свойств. Начальная стадия порчи рыбы — автолиз мышц, выражающийся в размягчении тканей под влиянием ферментов, а далее — распад белков до аминокислот.

Под воздействием микрофлоры может произойти и дальнейший их распад, вплоть – до окончательной порчи мяса рыбы и появления аммиака и сероводорода. Ферментов, вызывающих автолиз, в рыбе в среднем значительно больше, чем в тканях теплокровных животных. Так, в теплое время года в непотрошеной салаке быстрота, с которой наступает автолиз, может показаться ошеломляющей.

Поскольку деятельность бактерий, находящихся в рыбе, оживляется одновременно с изменениями, наступившими под влиянием ферментов, то эти изменения надо по возможности отдалить. Правда, в процессе автолиза в рыбе еще не появляются плохо пахнущие и неприятные на вкус вещества, как это наблюдается при гниении, вызван ном бактериями.

Но с точки зрения хранения рыбы и автолиз, бесспорно, — негативное явление. Разделка рыбы сразу же после ловли и достаточное охлаждение ее замедляют автолиз. Замедляет его также осторожное обращение с рыбой, в то время как при перекладывании рыбы с места на место. Щепании или тряске ее и т.д. он ускоряется. К автолизным явлениям можно отнести и окисление рыбьего жира, он становится прогорклым. Появление неприятного при вкуса в результате начавшегося процесса разложения – сигнал опасности для здоровья.

Однако рыба становится негодной к употреблению раньше, чем совершается полное окисление жиров. Этот процесс ускоряется при свободном соприкосновении рыбопродуктов с воздухом. На него в известной мере также влияют свет и соль. Медленное окисление рыбьего жира происходит и при замораживании. Как уже упоминалось, основная причина порчи рыбы — наличие в ней бактерий.

В естественных условиях жизни рыбы в слизистом слое ее кишечника, на поверхности жабр и кожи находится большое количество бактерий, в то время как мясо рыбы их не содержит. По каким же признакам можно отличить свежую и доброкачественную рыбу от испорченной?

Издавна известны признаки свежести рыбы:

  1. Ярко-красные жабры. Если кровь у рыбы выпущена, то цвет жабр довольно светлый. Жабры замороженной рыбы серые, с красноватым оттенком.
  2. Чистый и не особенно сильный запах, притом что у каждого вида рыбы в какой-то степени свой специфический запах, к тому же разный у морской и озерной рыбы.
  3. Светлые и несколько выпуклые глаза.
  4. Упругое на ощупь мясо. При надавливании на нем не остается вмятин. Мясо хорошо держится на позвоночнике.
  5. Яркая окраска и блестящая чешуя. Степень яркости окраски во многом зависит от сроков хранения рыбы, а также от того, хранилась она будучи сырой или сухой, помятой или нет. При замораживании окраска рыбы блекнет.
  6. Равномерный слой слизи, покрывающий всю кожу. Следует проверить стенки брюшной полости и внутренности не потрошеной рыбы, а также чешую и цвет мяса в области позвоночника — нет ли признаков порчи.

Постепенно появляющиеся признаки порчи рыбы:

  1. Красивый, ярко-красный цвет жабр пропадает, приобретая коричневый, серый и зеленый оттенки. Жабры покрываются слизью, и от них идет неприятный запах. Цвет жабр у рыб, уснувших в воде, с самого начала довольно светлый.
  2. Запах рыбы становится все сильнее и неприятнее.
  3. Глаза рыбы делаются мутными и запавшими, серого цвета. Степень мутности глаз показывает стадию порчи рыбы.
  4. Упругость мяса рыбы постепенно пропадает. При надавливании на него ос тается медленно исчезающий след. Мясо отделяется от позвоночника.
  5. Яркая окраска блекнет, особенно у озерной рыбы.
  6. Слизистый слой разбухает, собирается в комки и становится липким.
  7. Пропадает естественный цвет стенок брюшной полости, внутренности дурно пахнут, чешуя легко отделяется. Мясо в области позвоночника может стать красноватым.

Признаки свежести и порчи могут проявляться у рыб различных видов по-разному. Безусловно, необходимо иметь некоторые навыки для определения качества рыбы.

«Книга рыболова-любителя», О.Аулио

Обсеменение готовой продукции из рыбы зависит от характера ее переработки и условий технологического процесса.

Микрофлора свежей рыбы.

Микрофлора рыбы разнообразна, особенно много микробов находится в жабрах, желудочно-кишечном тракте и в слизи на поверхности тела. Жабры обсеменяются микрофлорой воды и придонного ила. На жабрах обнаруживаются бактерии рода Псевдомонас, которые обильно развиваются после смерти рыбы. В желудочно-кишечном тракте – анаэробные спорообразующие палочки, бактерии рода Сальмонелла и Клостридиум ботулинум. В слизи на поверхности рыбы - спорообразующие и бесспоровые палочки, микрококки, сарцины и другие обитающие в воде микроорганизмы.

Микрофлора охлажденной и замороженной рыбы.

Активная жизнедеятельность микробов прекращается при холодном хранении продуктов. На 1 см 3 поверхности тела свежей рыбы, поступившей на охлаждение, обнаруживают от 1 до 16 тыс. клеток микробов: Бациллус субтилис, бактерий группы кишечной палочки и др. В замороженной рыбе микробы находятся в анабиотическом (не деятельном) состоянии, т.к. температуры ниже 0 0 С не убивают всех микробов, а только снижают их количество. Гибель микробов при замораживании в основном происходит на первом этапе, в процессе замерзания среды. Оставшиеся в живых микробы при хранении продукта в дальнейшем отмирают медленнее. Низкие температуры подавляют развитие микробов, поэтому качественный состав микрофлоры рыбы после ее охлаждения и замораживания не изменяется. На поверхности мороженой рыбы находятся кокки, сарцины, палочковидные бактерии и плесневые грибы, спороносные бактерии. В тканях замороженной рыбы та же микрофлора, за исключением сарцин и плесневых грибов.

Количество микробов на поверхности охлажденной и замороженной рыбы и ее состав прямо зависят от степени бактериального загрязнения помещения. В холодильные камеры микробы попадают с охлажденным воздухом, партиями рыбы, инвентарем. Оседая на внутренних стенах камер, на полу, потолке, эти микробы постепенно приспосабливаются к низким температурам окружающей среды. Если условия влажности и температуры благоприятны, микробы развиваются и являются источником заражения поступающих в камеру новых партий рыбы.

Благоприятные условия для быстрого развития на рыбе бактерий и плесневых грибов создаются при резком колебании температуры в камере. Так, температура -10 0 С и повышенная влажность воздуха в камере способствуют развитию плесневых грибов. При постоянной низкой температуре развитие в рыбе микроорганизмов и гнилостные процессы прекращаются. Но, тем не менее некоторые микробы, находящиеся на замороженной рыбе в анабиотическом состоянии, могут вызвать порчу рыбы в холодильнике: это споровые и бесспоровые палочки, кокки, плесневые грибы и др. обладающие большой стойкостью и высокой приспособляемостью к низким температурам.



Микрофлора соленой рыбы.

Микрофлора соленой рыбы зависит от микрофлоры рыбы-сырца, т.е. от сырья. Свежую рыбу перед посолом обрабатывают, сортируют и потрошат, что значительно снижает обсемененность рыбы-сырца. При большой концентрации соли в тканях рыбы развитие бактерий прекращается. Из-за высокой осмотической активности раствора соли из микробных клеток выходит вода, и она оказывается в состоянии плазмолиза (обезвоживания). В этом состоянии клетки не могут питаться и осуществлять другие функции и погибают или переходят в состояние анабиоза.

Источником обсеменения соленой рыбы являются также вода, используемая для мойки и приготовления рассола, загрязненный инвентарь, инфицированная соль. Имеет значение также способ и условия посола и хранения рыбы.

Тормозящее действие солевых рассолов на гнилостную микрофлору неодинаково при разных условиях. Даже высокие концентрации соли не разрушают токсин, выделяемый Клостридиум ботулинум. Многие гнилостные бактерии постепенно привыкают к действию соли, поэтому солевые растворы всегда содержат большое количество бактерий за счет размножения солеустойчивых видов микробов. Микрофлора соли является источником загрязнения при любом способе посола. В ней содержатся: спорообразующие палочки, кокки, плесневые грибы.

Микрофлора копченой рыбы.

На микрофлору рыбы при горячем и холодном способе копчения губительно действуют высокая температура, влага и соль. Вещества, содержащиеся в коптильном дыме (фенолы, формальдегид, смолы, кислоты и др.) – действуют асептически (убивают м/о). Но полностью уничтожить микроорганизмы при копчении не удается.

Качество копченой рыбы и стойкость ее при хранении во многом зависят от степени исходного обсеменения рыбы-сырца и от соблюдения санитарно-гигиенических требований при производстве и хранении продукции.

Раньше других на копченой рыбе развиваются плесени и дрожжи, после чего активизируется деятельность бактерий. На поверхности встречаются микрококки и плесневые грибы, в толще тканей – Протей и др.бактерии.

Самым распространённым видом микробной порчи рыбы в плохих условиях хранения является гниение . Процесс гниения начинается с поверхности и проникает вглубь продукта. Распад белков под влиянием аэробов и анаэробов сопровождается образованием сернистых соединений (аммиака, сероводорода) и веществ с неприятным запахом (индола, скатола). Микробами-возбудителями гниения являются палочковидные бактерии – обычные обитатели водоемов и почвы. Многие актиномицеты и плесневые грибы также способны разлагать белок рыбы.

Плесневение соленой рыбы появляется, когда ее вынимают из посольной емкости и хранят в сухом виде в кучах. На поверхности появляются серые и бурые точки – колонии плесневых грибов.

Образование на поверхности соленой рыбы красноватого налета, неприятного запаха происходит при развитии солелюбивого аэробного спорового микроорганизма Серратии солинирии, который попадает с солью.

Микробная обсемененность поверхности рыбы находится в прямой зависимости от количества и качества микрофлоры водоема. В теплых морях значительная часть ее является мезофильными микроорганизмами, в умеренных и холодных регионах преобладают психрофильные микроорганизмы. Кроме того, есть зависимость от солености воды, галотолерантная, галофильная или негалофильная микрофлора.

Наличие патогенной микрофлоры в воде в большинстве случаев является результатом сброса неочищенных или плохо очищенных сточных вод. Это явление характерно, прежде всего, для внутренних водных бассейнов и прибрежных морских вод. В воду могут попасть кишечные палочки, энтерококки, сальмонеллы и шигеллы, Clostridiumbotulinum.

Мясо рыбы по химическому составу близко к мясу млекопитающих. Оно содержит много белков, жира и воды, но более рыхлая консистенция мяса рыб способствует быстрому распространению микроорганизмов в ее теле. В норме мышечная ткань рыб, как и мясо животных, не содержит микроорганизмов. На поверхности чешуи, жабрах свежевыловленной рыбы обнаруживается микрофлора родов Pseudomonas, Achromobacter, Vibrio(V. parahaemolyticus, V. аlginolyticuc) и др.

Контаминация рыбы начинается очень быстро после улова, преимущественно психрофильными микроорганизмами. Поэтому рыба – продукт, еще более подверженный порче, чем мясо животных.

Микрофлора свежей рыбы

Как и в случае с мясом, мышечная ткань свежевыловленной рыбы считается стерильной. Значительное число бактерий обнаруживается в покровной слизистой оболочке, на наружных жабрах и в желудочно-кишечном тракте. Число бактерий на 1 см2 поверхности тела рыбы может составлять от 1*103 до 1* 106 .

Степень обсеменения зависит от окружающей среды, географического положения водоема, времени года, орудий лова и от вида рыбы. Например, в свежей морской рыбе, выловленной тралом, содержится в 10-100 раз больше бактерий, чем в свежевыловленной на удочку. Причиной является завихрение морского грунта (ила) при буксировке трала.

На поверхности свежевыловленной морской рыбы содержится больше всего бактерий семейства Achromobacteriaceae, которые составляют 60% всей микрофлоры, из них 35-40% бактерий относится к роду Alcaligenes, 30% составляют виды Achromobacterliguefaciens. Менее 10% всей естественной микрофлоры на поверхности рыб приходится на следующие роды: Flavobacterium, Micrococcus, Vibrio, Corynebacterium, Bacillus. Иногда на поверхности рыбы встречаются пигментообразующие бактерии родов Sarcina, Klebsiela, Escherichia, Enterobacter, Citrobacterили светящиеся виды Photobacterium phosphoreum.

Микрофлора пресноводных рыб в средней полосе России в первую очередь состоит из психрофильных микроорганизмов родов Pseudomonas, Aeromonas, Alcaligenes, Flavobacterium, Achromobaсter, Micrococcus.

Внутренние воды часто бывают загрязнены сточными водами, поэтому пресноводные рыбы могут быть носителями патогенных микроорганизмов, чаще всего сальмонелл и стафилококков. На рыбе могут быть патогенные для рыбы микроорганизмы, которые безопасны для человека, но могут встречаться и опасные (патогенные) для человека.

Кроме того, в процессе переработки на рыбу могут попадать стафилококки, так как они составляют 40% микрофлоры рук и носоглотки.


Изменение микрофлоры рыбы во время ее хранения

Если рыбу не переработали или заморозили, то очень быстро начинается ее порча. Гнилостная микрофлора рыбы, которая вызывает основную часть процессов разложения, развивается очень быстро при температуре 15-20°С. Эта микрофлора является естественной микрофлорой рыбы.

Первичная порча морской рыбы происходит в результате разложения белков, жиров и углеводов. Если разложение протекает под влиянием собственных ферментов (автолиз), рыба приобретает мягкую рассыпчатую консистенцию без неприятных запахов и отклонений от вкусовых стандартов.

При нормативных температурах хранения на автолиз накладывается процесс бактериального разложения под влиянием литических ферментов. Наиболее активными протеолитическими ферментами обладают бактерии родов Pseudomonas и Achromobacter.

Число клеток микроорганизмов в мышечной ткани рыбы, достигающее 8*I05 в 1 г, является максимальным при определении пригодности рыбы для питания.

Бывают случаи неспецифического отравления рыбой, вызываемого биогенными аминами - ядами, которые образуются при бактериальном разложении рыбы. В этом случае белок мяса рыбы разлагается до свободных аминокислот, в том числе, и гистидина, который, декарбоксилируясь до гистамина, вызывает интоксикацию. Гистамин образуют как мезофильные, так и психрофильные бактерии родов Proteus, Е. coli, Achromobacter, Aerobacter.


Микробиология замороженной рыбы

Обычно при замораживании погибает 60-90% микрофлоры свежей рыбы, однако такие бактерии, как Pseudomonas, микрококки, лактобациллы и фекальные стрептококки более устойчивы к замораживанию. Например, бактерии рода Pseudomonas погибают при -12 `С в течение 3 мес. При такой же температуре погибают и бактерии рода Achromobacter. Хорошо переносят замораживание споры бактерий, дрожжи и плесневые грибы.

В замороженной рыбе обнаруживаются Е. coli, коагулазо-положительные стафилококки, сальмонеллы, возбудитель ботулизма. Чтобы получить замороженную рыбу, благополучную с точки зрения санитарии, для замораживания следует использовать свежую рыбу, обработанную при строгом соблюдении санитарно-гигиенических требований.

Соленая рыба

Посол - один из старых способов сохранения рыбы. Консервирующее действие посола обусловлено высокой осмотической активностью раствора соли и снижением водной активности (aw) среды. Поваренная соль не только тормозит размножение клеток, но и влияет на их биохимическую активность. Установлено (Е. Н. Дутова), что содержание соли до 4 % стимулирует протеолитическую активность микрококков, а при 6 %-ном содержании соли активность снижается, а при 12 %-ном - такая активность не обнаруживается. Аналогично влияние соли и в отношении активности восстановления бактериями окиси триметиламина в триметиламин.

В настоящее время практически исключен выпуск в реализацию крепкосоленой сырой рыбы. Посолу подвергают главным образом те виды рыб, которые способны при выдержке в определенных условиях созревать (сельдевые, лососевые), т. е. приобретать специфические вкусовые качества и более мягкую консистенцию в результате происходящих в рыбе биохимических процессов превращения белков и липидов под влиянием ее собственных ферментов. Созревшая рыба становится съедобной без дополнительной кулинарной обработки. Некоторая роль в процессах созревания принадлежит и микроорганизмам, находящимся в тузлуке и на рыбе.

Несозревающие виды рыб подвергают посолу для сохранения их в качестве полуфабриката, используемого при изготовлении вяленой, сушеной, копченой и других видов рыбной продукции.

Степень обсеменения соленой рыбы микробами колеблется в широких пределах (от сотен до сотен тысяч в 1 г) в зависимости от первоначального их содержания на рыбе, концентрации соли, температуры и срока хранения. При любом способе посола рыбы происходят изменения количественного и качественного состава ее микрофлоры. Типичные для свежей рыбы психротрофные виды Pseudomonas постепенно отмирают или сохраняются в небольшом количестве в плазмолизированном состоянии. Преобладающими в соленой рыбе и в тузлуках становятся галофильные и солеустойчивые микрококки; в меньшем количестве обнаруживаются спороносные палочки; встречаются молочнокислые бактерии, дрожжи, споры плесеней, коринебактерии.

У соленой рыбы при хранении могут появляться различные дефекты. Некоторые из них обусловлены развитием микроорганизмов. Анаэробные бактерии, из-за которых появляется «фуксин» - красный, слизистый налет с неприятным запахом, солеустойчивые микрококки, образующие красный пигмент и галофильные коричневые плесени вызывают порчу соленой рыбы.

При поражении плесенью на поверхности рыбы появляются пятна и полосы коричневого цвета. Этот дефект называется «ржавлением». Коричневые плесени при температуре ниже 5°С не развиваются.

Слабосоленая сельдь может подвергаться под влиянием развития аэробных, холодо- и солеустойчивых бактерий «омылению». При этом поверхность рыбы покрывается грязноватобелым, мажущимся налетом. Рыба приобретает неприятный вкус и гнилостный запах. В соленой сельди могут выживать и токсигенные бактерии: сальмонеллы, золотистый стафилококк, ботулинус.

Слабосоленая рыбная продукция из мелкой рыбы (кильки, салаки, хамсы и др.), выпускаемая в герметично закрытой таре,- пресервы - помимо небольшого количества соли содержит сахар и специи. Пресервы не подвергают тепловой обработке; для предохранения от порчи в них вводят антисептик - бензойнокислый натрий (0,1 %). Хорошие результаты взамен него или в сочетании с ним дают сорбиновая кислота и антибиотик низин. Процесс просаливания и созревания ведут в течение 1,5-3 мес. при температуре от -5 до 2°С. Некоторый консервирующий эффект обеспечивает и поваренная соль.

Микрофлора пресервов в первые дни их изготовления разнообразна; в состав ее входят микроорганизмы рыбы, соли и специи. Последние нередко в значительной степени (104-106/г) обсеменены спорообразующими аэробными и анаэробными бактериями и микрококками, среди которых имеются солеустойчивые и холодоустойчивые гнилостные формы. В процессе созревания пресервов состав их микрофлоры меняется. Доминирующими представителями становятся солеустойчивые микрококки и молочнокислые бактерии.

В процессах созревания рыбы, помимо тканевых ферментов, немалая роль принадлежит гетероферментативным молочнокислым стрептококкам. Будучи устойчивыми к соли и бензойнокислому натрию, они размножаются, сбраживают сахар с образованием кислот (молочной, уксусной) и ароматических веществ. Снижение рН активизирует некоторые тканевые ферменты рыбы, участвующие в ее созревании.

Наличие кислот, соли и антисептика, а также низкая температура препятствуют развитию гнилостных споровых бактерий, находящихся в немалых количествах в пресервах. Однако некоторые из них, особенно при нарушении технологического режима изготовления и хранения пресервов, могут развиваться и обусловить порчу продукта. В пресервах нередко обнаруживается Clostridiumperfringens- обитатель кишечника рыб, попадающий и со специями. Активное развитие этой бактерии может привести к бомбажу банки. Для повышения стойкости пресервов в хранении рекомендуется пользоваться стерильными специями. Для лучшего сохранения ароматических свойств специй целесообразна их холодная стерилизация (УФ-лучами, гамма-радиацией).

Микрофлора кожи рыб зависит от воды, в которой они обитают.

Сброс неочищенных стоков в воду приводит к тому, что наряду с бактериями группы кишечных палочек и энтерококками в водоемы могут попадать также сальмонеллы и шигеллы. Из других патогенных микробов в воде может находиться Closlridium botulinum. Морской осадок, взятый в качестве пробы из североамериканских прибрежных морских вод, также содержаит C. botulinum типов С, D и Е.

Общеизвестно, что микробы вида Vibrio parahaemolyticus встречаются в морских районах Восточной Азии. Мышечный сок и мышечная ткань свежевыловленной рыбы считаются стерильными, хотя некоторые исследователи и выявляли наличие бактерий в мышечной ткани свежих рыб. Значительные количества бактерий были обнаружены в покровной слизистой оболочке, на наружных жабрах и в желудочно-кишечном тракте. Количество бактерий, находящихся на 1 см 2 поверхности рыбы, может составлять от 10 3 до 10 6 . Аналогичное количественное содержание бактерий выявляют и на наружных жабрах рыб. В содержимом кишечника по Шевану содержится 10 3 …10 6 бактерий на 1 см 3 . На коже обыкновенных килек обнаружено 2700…8580 бактерий на 1 см 2 .

Степень обсеменения бактериями зависит, во-первых, от окружающей среды и, во-вторых, от способа лова. В свежей рыбе, выловленной тралом, содержится в 10…100 раз больше бактерий, чем в свежевыловленной на удочку. Причиной того является завихрение морского грунта (ила, илистого наноса) при буксировке трала.

Хотя микрофлора рыб и находится в прямой взаимосвязи с микрофлорой окружающей ее воды, существуют различия в содержании отдельных бактерий у различных видов рыб одного и того же района лова. Объясняется это явление различным составом покровной (кожной) слизистой оболочки у отдельных видов рыб.

Микрофлора кишечника является примерно постоянной и менее зависимой от окружающей среды. Из проб кожи и наружных жабр выловленных в Северном море рыб выделены бактерии родов Pseudomonas, Achromobacter, Vibriо и Corynebactеrium. Анаэробные бактерии отсутствовали на поверхности рыбы. Бактерии рода Achroinobacter по мере хранения рыбы постепенно отмирают, хотя отдельные вилы бактерий этого рода принимают участие в гнилостном разложении рыбы.

К микрофлоре рыбы относятся еще отдельные обитающие в морской воде пигментообразующие представители рода Sarcina , а также бактерии из семейства Enterobacteriaceaе родов Klebsiella, Escherichia, Entcrobacter, Citrobacter.

При ловле рыб в шотландских прибрежных водах и в промысловых участках вблизи Исландии выделили 189 штаммов дрожжей. Они были отнесены к родам Debaryomyccs, Torulopsis, Candida, Rbodotorula, Pichia, Cryptococcus. Большинство штаммов дрожжей ндентифицировано как Debaryonyces kloeckcri (47,7 %), Torulopsis inconspicua (12,8%) и Candid aparapsilosis (10,1 %).


В желудочно-кишечном тракте находятся также микроорганизмы тех же родов, которые обнаруживают в покровной слизистой оболочке и соответственно на наружных жабрах. Кроме того, встречаются представители родов Psеudomonas, Micrococcus.

Микрофлора пресноводных рыб состоит также в первую очередь из психрофильных микробов. Основная микрофлора состоит в значительной степени из представителей следующих родов: Pseudomonas , Aeromonas , Alcaligenes, Achromobacter, Micrococcus. К этому следует добавить еще коринебактерии и Serratien. Из мышц пресноводных рыб были выделены различные микроорганизмы, которые соответствуют микрофлоре среды обитания рыб.

Поскольку внутренние воды часто загрязняются сточными водами, пресноводные рыбы могут являться носителями патогенных для человека бактерий. Особую роль при этом играют сальмонеллы и энтеротоксигенные штаммы стафилоккоков.

Нередки случаи заболевания человека, питающегося рыбой, рожистым воспалением. Возбудитель этой болезни Erysipеlothrix rhusiopalhiae имеется в слизи многих видов рыб.

До настоящего времени эти микробы были обнаружены у следующих видов рыб: красный окунь, тригли (морской петух), сельдь, пикша, камбала Белого моря, морской лосось, селедочная акула, красный язык, зубатка полосатая, треска. Неясно, каким образом происходит инфицирование рыб этими возбудителями. Можно утверждать, что речь идет о вторичном обсеменении на борту рыболовного судна или в процессе переработки рыбы на земле. Обсеменение рыбы возбудителями рожистого воспаления находится в непосредственной связи с наружной температурой.

Интенсивность обсеменения возрастает в том случае, если средняя температура воздуха превышает 11,5 °С Свежая рыба может быть обсеменена сальмонеллами и шигеллами. Так 11 % рыбы, поступающей па рынки Каира, было обсеменено сальмонеллами и шигеллампи Чаще всего обсеменен ой бывает рыба из Нила.

Пресноводные рыбы могут длительное время сохранять сальмонеллы в своем организме. Если рыба помещена в небольшом пространстве, возможен перенос сальмонелл от одной рыбы к другой. Массовое эндогенное обсеменение S. cntcritidis или S. typhimurium вызывает у рыб псевдомембранозные воспаления кишечника.

В пищеводе или на жабрах рыбы, кроме обычно встречающихся там сапрофитных анаэробных спорообразующих бактерий, имеются споры C. tetani и C. botulinum.

C. botulinum типа Е. был выделен у морских и пресноводных рыб Америки, Азии и Европы. В бассейне Балтийского моря в особенности в прибрежных водах Швеции и Дании, его находят в пищеводе камбалы и наваги западногерманских берегов. Споры типа Е обладают лишь незначительной стойкостью к нагреванию: при 80 °С более половины спор отмирает в течение 1,78…3,3 мин.

Кроме типа Е, у рыб могут содержаться споры типов А. В, С и D. Тем не менее они встречаются редко. Образование токсина у типа Е начинается при 5 °С и у типов А, В, С, D-начиная с 10 °С.

В 1951 г. впервые в Японии были описаны случаи обсеменения пищевых продуктов V. parahaemolyticus. Исследования, проведенные в европейских водах, позволили выявить присутствие этих вибрионов у рыб Балтийского, Северного, Черного и Средиземного морей. Большинство их находится в сожительстве с апатогенными V. algsnolyticus так что последние можно рассматривать в качестве микробов-индикаторов.

Представляет интерес V. caspii, вызывающий болезни окуня и карпа в Каспийском море. Так как V. caspii при проведении исследований оказался патогенным также для теплокровных (тюлени и белые мыши), перед употреблением рыбы необходимо произвести уничтожение микробов путем варки или жарения.

Разложение морской рыбы может протекать в результате разложения белка, жира и углеводов под влиянием собственных ферментов (автолиз). Особенно заметно это проявляется у рыб, у которых в результате обильной пищи в кишечнике образуются пищеварительные ферменты. Благодаря действию собственных ферментов разлагающаяся рыба имеет мягкую рассыпчатую консистенцию без неприятных запахов и отклонений от вкусовых стандартов.

Автолиз способствует проникновению микробов из пищевода или из кожи и жабры в мышечную ткань. Наиболее протеолитически активные бактерии рода Achronmbacter интенсивно размножаются во время процесса разложения.

Бактериальное обсеменение мяса рыбы происходит в результате проникновения бактерий с поверхности через чешуйчатые караганы жабер, через систему кровеносных сосудов или через стенки кишечника и брюшную полость в мускулатуру.

Таким образом, определение количества микробов в мясе рыбы не представляет собой единственного метода для суждения о степени свежести рыбы. Количество микробов 8-10 5 в 1г мышечной ткани рассматривается как границы пригодности рыбы для питания. Другим методом, предназначенным для оценки степени обсеменения бактериями, является тест на редуктазу. До настоящего времени эту пробу применяют при исследовании пресноводных рыб.

При разложении белка в мышцах образуется целый ряд веществ, таких, как сероводород, индол, муравьиная, щавелевая, масляная кислоты и т. д. За счет ферментативного разложения протеинов образуются свободные аминокислоты и свободный гистидин. В результате бактериального разложения белка гистидин может быть декарбоксилирован до гистамина. К большой группе микробов как мезофильных, так и психрофильных бактерий, образующих гистамин, относятся представители рода Proteus (Proteus morganii), а также Escherichia coli, Е. Freundii, Acrobacter aerogenes и виды рода Hafnia.

Гавелка (B .Hvelka.,1974) при проведении исследований микрофлоры мяса тунцовых рыб обнаружил, что из 173 выделенных штаммов, из которых 84,4% были психротолерантны, только 12 могли декарбоксилировать гистидин. Отсюда следует, что далеко не всегда можно объяснить причины гистаминовой интоксикации.

Относительно количества гистамина, необходимого для возникновения заболевания, имеются противоречивые данные. Считают, что заболевание может наступить при концентрации в мясе порядка 600-900 мг/кг. Пищевые продукты с концентрацией свыше 300 мг/кг гистамина считаются непригодными в пищу. Кроме того, в мышечном экстракте различных типов содержится описанный биогенный амин - саурин. Он оказывает сильное стимулирующее действие на Nеrvus vagus .

Посмертные изменения, возникающие в тканях рыбы, обусловлены рядом особенностей ее анатомического строения и особенностями химического состава тканей. К этим особенностям можно отнести:

Значительная влажность ткани и высокое содержание воды в них.

Нежная структура мышечных волокон, отсутствие плотных соединительнотканных образований.

Наличие белковой слизи на поверхности способствует интенсивному развитию микроорганизмов и последующему быстрому инфицированию мышечной ткани.

Высокая активность тканевых ферментов рыбы по сравнению с мясом.

Вытянутый вдоль всего корпуса кишечник и непосредственная близость его к позвоночной артерии. Из кишечника микрофлора постепенно проникает в окружающие органы, в первую очередь в паренхиматозные, крупные сосуды, которые представляют благоприятную среду для развития микроорганизмов.

Разнообразные пути инфицирования рыбы.

Посмертные изменения возникают под действием ферментов, которые содержатся в тканях, а также за счет ферментов микроорганизмов. Тканевые ферменты способствуют расщеплению органических веществ, содержащихся в теле рыбы. При этом накапливаются вещества, изменяющие консистенцию мяса, она становится более рыхлой. Ферменты микроорганизмов приводят к порче рыбы (рис. 2).

Посмертные изменения в рыбе протекают в четыре стадии:

1. Выделение слизи

Поверхность живой рыбы покрыта слоем прозрачной слизи. Ее выделяют особые клетки эпидермиса кожи. После смерти эти клетки еще некоторое время продолжают выделять слизь, и ее количество на поверхности при этом увеличивается. У только что уснувшей рыбы слизь прозрачная, но по мере хранения она мутнеет и приобретает темно-серую окраску из-за накопления в ней микроорганизмов. Микроорганизмы из слизи начинают проникать в тело рыбы и вызывать порчу, которая сопровождается гнилостным запахом. Выделение слизи прекращается перед наступлением посмертного окоченения.

2. Посмертное окоченение. Начинается с головы и постепенно переходит на мышцы туловища и хвоста. При посмертном окоченении тело не поддается сгибанию из-за затвердевания брюшных и спинных мышц; челюсти крепко сжаты, жаберные крышки плотно прижаты к жабрам; мясо твердое, при нажатии пальцем ямочка не образуется. Затвердевание наступает вследствие сокращения мышц, и они некоторое время находятся в напряженном состоянии.

Характерной особенностью мышечного окоченения является снижение влагоудерживающей способности, которая проявляется в отделении мышечного сока. Это вызвано рядом факторов, к которым относятся сокращение мышц, уменьшение рН, увеличение проницаемости мембран.

Посмертное окоченение обусловливает длительное сохранение свежей рыбы. Чем поздней оно начинается и дольше продолжается, тем позднее наступает стадия автолиза (аутолиза) и бактериального разложения мяса. Большинство микроорганизмов хорошо развивается в щелочной среде. До начала посмертного окоченения мясо рыбы имеет нейтральную (рН 7,03–7,2) или слабощелочную реакцию (у утомленных рыб рН 6,2–6,4), при этом микроорганизмы могут проявлять свою активность.

У рыбы, быстро вынутой из воды и немедленно убитой, окоченение наступает не так скоро, как у погибшей от удушья, и длится дольше, поэтому желательно искусственно умерщвлять рыбу. Чем ниже температура тела рыбы, тем позднее наступает посмертное окоченение и тем дольше оно длится.

Окончанием процесса является расслабление мышц, которое наступает после полного распада АТФ. Отсутствие энергии в мышце вызывает распад актомиозинового комплекса с образованием белков миозина и актина. При этом восстанавливается структура мышц, повышаются рН, влагоудерживающая способность мышц и растворимость белков; мясо рыбы при этом отличается хорошим качеством, имеет приятный вкус и аромат, однако с повышением рН активизируются тканевые ферменты.

3. Аутолиз (автолиз). Это гидролитический распад (самопереваривание) многих органических веществ тела (гликогена, фосфатов, жира, белков и др.) под влиянием ферментов, содержащихся в мясе. В стадии посмертного окоченения рыба считается свежей, а при аутолизе ее качество резко снижается.

Аутолиз вызывается целой группой ферментов, включающих протеиназы, липазы и амилазы, но основная роль при этом отводится протеолитическим ферментам. Под действием протеолитических ферментов, разрушающих соединительнотканные белки (коллаген), изменяется структурная сетка мышечной ткани, обусловливающая упругость тела свежей рыбы. При аутолизе белки под действием эндопептидазы распадаются до пептонов и полипептидов, а также до аминокислот. Некоторые аминокислоты под действием дезаминазы расщепляются с образованием аммиака. Увеличивается уровень свободных серосодержащих аминокислот, изменяется их качественный состав, что влечет за собой изменение вкуса и аромата мяса.

Под действием собственных липолитических ферментов происходит гидролиз и окисление липидов, содержащихся как в мышечной, так и в жировой тканях. Изменяется качественный состав жирных кислот. Из ненасыщенных образуются низкомолекулярные насыщенные жирные кислоты. При окислении жирных кислот накапливаются перекиси, гидроперекиси, альдегиды, кетоны и др. Накопление продуктов распада жирных кислот способствует появлению прогорклого вкуса. Аутолиз зависит от температуры: чем она выше, тем быстрее идут ферментативные процессы.

Аутолиз постепенно переходит в бактериальное разложение.

4. Бактериальное разложение. При бактериальном разложении мясо рыбы теряет часть воды, которая вместе с растворенными в ней веществами выходит на поверхность рыбы, образуя слизь. На слизи быстро развиваются гнилостные микроорганизмы. Эта слизь по природе отличается от слизи, выделяющейся на поверхности тела после смерти и имеющей биохимическое происхождение. Слизь в стадии бактериального разложения имеет микробиологическое происхождение. На теле рыбы появляется зеленовато-желтое или серое окрашивание, чувствуется гнилостный запах.

В зависимости от степени развития гнилостного разложения в рыбе образуются газы, вспучивающие брюшко, которое становится дряблым. Жабры бледнеют и покрываются пахнущей слизью, глаза мутнеют и впадают в орбиты. Кожные покровы тускнеют. Мясо становится дряблым при прощупывании. Рыбу в стадии бактериального разложения в пищу не употребляют.