Проведение возбуждения через нервно мышечный синапс. Нервно-мышечный синапс (мионевральный синапс) — эффекторное нервное окончание на скелетном мышечном волокне. Движение как основное свойство живого

ОТВЕТ: Импульсы передаются с нервного волокна на мышцу с помощью специального контакта – синапса.

Синапс – межклеточный контакт, который служит для передачи возбуждения с нервной клетки на клетку другой возбудимой ткани. Двигательное нервное волокно, входя в мышцу, утончается, теряет миелиновую оболочку и делится на 5 – 10 веточек, которые подходят к мышечному волокну. В месте контакта с мышцей нервное волокно формирует колбообразное расширение – синаптическое окончание. Внутри этого окончания находится много митохондрий, а также специфические органеллы – синаптические пузырьки, содержащие специальное вещество медиатор (в нервно-мышечном синапсе медиатором является ацетилхолин). Синаптическое окончание покрыто пресинаптической мембраной.

Участок мембраны мышечного волокна, который находится напротив пресинаптической мембраны, имеет особое строение и называется постсинаптической мембраной, или концевой пластинкой. Пространство между пре- и постсинаптической мембраной носит название синаптическая щель. В пресинаптической мембране имеются каналы для ионов кальция, которые открываются при снижении мембранного потенциала (деполяризации). В постсинаптической мембране располагаются рецепторы к ацетилхолину, а также фермент холинэстераза, который разрушает ацетилхолин. Рецепторы представляют собой каналы для ионов натрия, которые открываются при взаимодействии с ацетилхолином.

Следует понимать, что пространство внутри синаптического окончания – это внутриклеточная жидкость, которая относится к нейрону. Синаптическая щель – это внеклеточное пространство. Под постсинаптической мембраной находится цитоплазма мышечного волокна, то есть это внутриклеточное пространство.

Механизм передачи возбуждения в синапсах. Передача возбуждения с нерва на мышцу осуществляется в несколько последовательных этапов. Сначала нервный импульс поступает по аксону и вызывает деполяризацию пресинаптической мембраны. Снижение мембранного потенциала приводит к открытию кальциевых каналов. Поскольку концентрация ионов кальция во внеклеточной среде выше, чем во внутриклеточной, они поступает внутрь синаптического окончания (по сути, во внутриклеточное пространство). Ионы кальция взаимодействуют с синаптическимим пузырьками, из-за чего синаптические пузырьки сливаются с пресинаптической мембраной, и медиатор ацетилхолин выходит в синаптическую щель.

Далее ацетилхолин подходит к постсинаптической мембране и взаимодействует с холинорецепторами. Вследствие этого каналы для натрия открываются, натрий устремляется во внутриклеточное пространство. Поступление ионов натрия в цитоплазму мышечного волокна приводит к уменьшению мембранного потенциала (деполяризации) постсинаптической мембраны, и на ней формируется потенциал концевой пластинки (ПКП). Возникновение ПКП, в свою очередь, вызывает генерацию потенциала действия на соседнем участке мембраны мышечного волокна. Ацетилхолин на постсинаптической мембране очень быстро разрушается холинэстеразой, поэтому натриевые каналы почти сразу закрываются. Если бы этого не происходило, постсинаптическая мембрана была бы всё время деполяризована, и передача возбуждения стала бы невозможной.

Таким образом, возбуждение передаётся с нервного волокна на мышечное.

Итак, передача возбуждения с нерва на мышцу осуществляется в следующей последовательности:

1. Распространение импульса по нервному волокну.

2. Деполяризация пресинаптической мембраны.

3. Открытие кальциевых каналов и поступление ионов кальция в синаптическое окончание.

4. Выделение медиатора в синаптическую щель.

5. Взаимодействие медиатора с холинорецепторами на постсинаптической мембране.

6. Открытие натриевых каналов на постсинаптической мембране.

7. Возникновение потенциала концевой пластинки.

8. Генерация потенциала действия на мембране мышечного волокна.

Основным свойством синапса является проведение возбуждения только в одну сторону: от пресинаптической мембраны к постсинаптической. В обратном направлении импульс передаваться не может. Передача возбуждения в синапсе осуществляется с задержкой.

Нервное волокно непосредственно не контактирует с мышечным. Между ними очень узкая щель (20-50 нм). Нервное окончание, часть мышечного волокна, к которой прилегает это окончание, и щель между ними составляют нервно-мышечный синапс. Нервное волокно заканчивается синаптической бляшкой, в которой содержатся Мтохондрии и значительное количество (около 300 тыс.) пузырьков, где концентрируется медиатор - вещество, с помощью которой возбуждение распространяется с нерва на мышцу. В нервно-мышечном синапсе этим медиатором является ацетилхолин. Синтез ацетилхолина происходит в синаптической бляшке и требует энергетических затрат. Часть бляшки, прилегающей к щели, называется пресинаптической мембраной. С другой стороны щели расположен постсинаптическая мембрана, которая принадлежит мышечному волокну. Часть этой мембраны, которая непосредственно прилегает к бляшки, называется конечной пластинкой.
В состав постсинаптической мембраны входят рецепторные белки (молекулярная масса - около 275 000), которые реагируют на ацетилхолин и называются холинорецепторами. Они реагируют также на никотин, отсюда их название - Н-холинорецепторы. Реакция ацетилхолина с Н-холинорецепторы приводит конформационные изменения молекулы рецептора. Это влияет на рядом расположенный хемочутливий ионный канал, который может пропускать Na +, К +, Са2 +. Белковые структуры этих каналов имеют отрицательный заряд, и поэтому анионы через них не проходят.
Передача информации через нервно-мышечный синапс происходит в такой последовательности:
1. Нервным волокном в бляшки приходит ПД.
2. Вследствие действия ПД на мембрану нервного окончания открываются Са2 +-каналы и эти ионы вступают в бляшку.
3. Повышение в бляшке концентрации Са2 + приводит (при участии кальмодулина) до выхода медиатора из пузырьков в синаптическую щель. Вследствие действия единичного ПД медиатор выходит примерно из 300 пузырьков.
4. Ацетилхолин диффундирует через щель.
5. Ацетилхолин реагирует с Н-холинорецепторы.
6. Открываются «ворота» хемочутливих каналов и за концентрационным градиентом Na + переходит в мышечное волокно, а К + - наружу.
7. Происходит деполяризация концевой пластинки и развивается ее потенциал (ПКП). ПКП-один из видов местного возбуждения. Чем больше выделяется ацетилхолина, то в большей степени выражен этот потенциал.
8. Когда ЛКП достигает критической величины (ЕКС), деполяризуется колосинаптична електрозбудлива мембрана и развивается
ПД мышечного волокна, которое распространяется по обе стороны синапса. В этом процессе участвуют потенциалзависимые ионные каналы.
Ацетилхолин выделяется в незначительном количестве даже тогда, когда ПД нервными волокнами не поступает. Даже в таком количестве (кванты медиатора) он обуславливает незначительную деполяризацию постсинаптической мембраны (доли мВ), которая имеет название миниатюрных потенциалов концевой пластинки (МПКП).
Ацетилхолин, выделившегося в синаптическую щель, очень быстро разрушается ферментом ацетилхолинэстеразой. Вследствие этого образуется холин, который попадает в синаптическую бляшку и участвует в создании новых порций ацетилхолина.
Передача информации в нервно-мышечном синапсе происходит в одном направлении, с определенной задержкой (около 0,5 мс). При слишком частых и длительных раздражениях могут наступать истощение запасов ацетилхолина и усталость, являются методы усиления или ослабления нередачи импульсов нервно-мышечных синапсов. Так, усилить передачу их можно с помощью заменителей ацетилхолина-холиномиметическим средств (например, карбахолин) или путем инактивации ацетилхолинэстеразы (езерин, физостигмин). В этом случае медиатор не разрушается, его действие усиливается и продлевается.
Ослабить или прекратить передачу можно при введении курареподобных веществ - миорелаксантов (например тубокурарина, диплацина). Эти препараты связываются с холинорецепторами и блокируют действие ацетилхолина.

Синапсом (от греч. синапсис – соединение) называют область функционального соединения одного нейрона с другим или нейрона с эффектором, которым может быть либо мышца, либо внешнесекреторная железа. Это понятие ввёл в обращение на рубеже XIX – XX веков британский физиолог Чарльз С. Шеррингтон (Sherrington Ch.) для обозначения специализированных контактных зон, обеспечивающих связь между нейронами.

В 1921 году Отто Лёви (Loewi O.), сотрудник института фармакологии в Граце (Австрия), с помощью простых по исполнению и остроумных по замыслу экспериментов показал, что влияние блуждающих нервов на сердце обусловлено химическим веществом – ацетилхолином. Английский фармаколог Генри Дейл (Dale H.) сумел доказать, что ацетилхолин образуется в синапсах различных структур нервной системы. В 1936 году Лёви и Дейл получили Нобелевскую премию за открытие химической природы передачи нервной энергии.

Среднестатистический нейрон образует более тысячи синапсов с другими клетками мозга, всего же в мозгу человека приблизительно 1014 синапсов. Если считать их со скоростью 1000 штук в секунду, то лишь через несколько тысяч лет можно будет подвести итог. В подавляющем большинстве синапсов для передачи информации от одной клетки к другой используются химические посредники – медиаторы или нейротрансмиттеры. Но, наряду с химическими синапсами существуют электрические, в которых сигналы передаются без использования медиаторов.

В химических синапсах взаимодействующие клетки разделены заполненной внеклеточной жидкостью синаптической щелью шириной 20-40 нм. Для того, чтобы передать сигнал, пресинаптический нейрон выделяет в эту щель медиатор, который диффундирует к постсинаптической клетке и присоединяется к специфическим рецепторам её мембраны. Соединение медиатора с рецептором приводит к открытию (но в некоторых случаях – к закрытию) хемозависимых ионных каналов. Через открывшиеся каналы проходят ионы и этот ионный ток изменяет значение мембранного потенциала покоя постсинаптической клетки. Последовательность событий позволяет разделить синаптический перенос на два этапа: медиаторный и рецепторный. Передача информации через химические синапсы происходит гораздо медленней, чем проведение возбуждения по аксонам, и занимает от 0,3 до нескольких мс – в связи с этим получил распространение термин синаптическая задержка.

В электрических синапсах расстояние между взаимодействующими нейронами очень мало – приблизительно 3-4 нм. В них пресинаптический нейрон соединяется с постсинаптической клеткой особым видом ионных каналов, пересекающих синаптическую щель. По этим каналам локальный электрический ток может распространяться от одной клетки к другой.

Из всех существующих в организме человека синапсов наиболее простым является нервно-мышечный. который был хорошо изучен ещё в 50-х годах ХХ века Бернардом Катцем и его коллегами (Katz B. – лауреат Нобелевской премии 1970 года). В образовании нервно-мышечного синапса участвуют тонкие, свободные от миелина разветвления аксона мотонейрона и иннервируемые этими окончаниями волокна скелетной мышцы (Рис 5.1).

Каждая веточка аксона на конце утолщается: это утолщение называют концевой пуговкой или синаптической бляшкой. В ней содержатся синаптические пузырьки, заполненные медиатором: в нервно-мышечном синапсе им является ацетилхолин. Большая часть синаптических пузырьков расположена в активных зонах: так называются специализированные части пресинаптической мембраны, где медиатор может выделяться в синаптическую щель. В пресинаптической мембране есть каналы для ионов кальция, которые в покое закрыты и открываются лишь тогда, когда к окончанию аксона проводятся потенциалы действия.

Концентрация ионов кальция в синаптической щели намного выше, чем в цитоплазме пресинаптического окончания нейрона, и поэтому открытие кальциевых каналов приводит к вхождению кальция в окончание. Когда концентрация кальция в окончании нейрона повысится, синаптические пузырьки сливаются с активной зоной. Содержимое слившегося с мембраной пузырька опорожняется в синаптическую щель: такой механизм выделения называется экзоцитозом. В одном синаптическом пузырьке содержится около 10 000 молекул ацетилхолина, а при передаче информации через нервно-мышечный синапс он одновременно освобождается из многих пузырьков и диффундирует к концевой пластинке.

Концевой пластинкой называется часть мышечной мембраны, контактирующая с нервными окончаниями. У неё складчатая поверхность, причём складки находятся точно напротив активных зон пресинаптического окончания. На каждой складке, расположившись в форме решётки, сосредоточены холинорецепторы, их плотность около 10 000/ мкм2. В глубине складок холинорецепторов нет – там только потенциалзависимые каналы для натрия, причём их плотность тоже высока.

Встречающаяся в нервно-мышечном синапсе разновидность постсинаптических рецепторов относится к типу никотинчувствительных или Н-холинорецепторов (в главе 6 будет описана другая разновидность – мускаринчувствительные или М-холинорецепторы). Это трансмембранные белки, являющиеся одновременно и рецепторами, и каналами (Рис. 5.2). Они состоят из пяти субъединиц, сгруппированных вокруг центральной поры. Две субъединицы из пяти одинаковы, они имеют выступающие наружу концы аминокислотных цепей – это рецепторы, к которым присоединяется ацетилхолин. Когда рецепторы свяжут две молекулы ацетилхолина, конформация белковой молекулы изменяется и во всех субъединицах сдвигаются заряды гидрофобных участков канала: в результате появляется пора диаметром около 0,65 нм.

Через неё могут пройти ионы натрия, калия и даже двухвалентные катионы кальция, в то же время прохождению анионов мешают отрицательные заряды стенки канала. Канал бывает открыт в течение приблизительно 1 мс, но за это время через него в мышечное волокно входит около 17 000 ионов натрия, а несколько меньшее количество ионов калия – выходит. В нервно-мышечном синапсе почти синхронно открывается несколько сотен тысяч управляемых ацетилхолином каналов, поскольку выделившийся только из одного синаптического пузырька медиатор открывает около 2000 одиночных каналов.

Суммарный результат ионного тока натрия и калия через хемозависимые каналы определяется преобладанием тока натрия, что приводит к деполяризации концевой пластинки мышечной мембраны, на которой возникает потенциал концевой пластинки (ПКП). Его величина составляет как минимум 30 мВ, т.е. всегда превышает пороговое значение. Возникший в концевой пластинке деполяризующий ток направляется к соседним, внесинаптическим участкам мембраны мышечного волокна. Поскольку его величина всегда выше пороговой, он активирует потенциалзависимые натриевые каналы, расположенные поблизости от концевой пластинки и в глубине её складок вследствие этого возникают потенциалы действия, которые распространяется вдоль мышечной мембраны.

Выполнившие свою задачу молекулы ацетилхолина быстро расщепляются находящимся на поверхности постсинаптической мембраны ферментом – ацетилхолинэстеразой. Её активность достаточно высока и за 20 мс она в состоянии все связанные с рецепторами молекулы ацетилхолина превратить в холин и ацетат. Благодаря этому холинорецепторы освобождаются для взаимодействия с новыми порциями медиатора, если он продолжает выделяться из пресинаптического окончания. Одновременно с этим ацетат и холин с помощью специальных механизмов транспорта поступают в пресинаптическое окончание и используются для синтеза новых молекул медиатора.

Таким образом, основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическом окончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к Н-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

5.3. Помехи в синаптической передаче

Нарушение любого из этапов синаптической передачи разлаживает деятельность синапса в целом. Так, например, при отравлении ботулиническим токсином может наступить мышечный паралич и даже смерть из-за прекращения деятельности дыхательных мышц. Этот токсин выделяют бактерии

Сlostridium botulinum, которые быстро размножаются в мясных и рыбных консервах, приготовленных с нарушениями технологии, что чаще всего бывает при домашнем консервировании. Ботулинический токсин даже в малой концентрации способен блокировать выделение ацетилхолина из пресинаптических окончаний мотонейрона, а следствием этой блокады является мышечный паралич.

Давно известен яд кураре, которым южноамериканские индейцы обрабатывали наконечники своих стрел. Кураре представляет собой сгущённый растительный экстракт древесного сока, добываемого из коры лиан видов Strychnos и Chondodendron. Этот яд может присоединиться к Н-холинорецепторам в нервно-мышечном синапсе, становясь конкурентом ацетилхолину. Длительная блокада холинорецепторов ядом приводит к остановке дыхания и смерти (надо принять во внимание, что деятельность дыхательных мышц регулируется мотонейронами, которые передают возбуждение через нервно-мышечные синапсы).

Связь яда кураре с холинорецепторами обратима: если ацетилхолин накапливается в синапсе в высокой концентрации, он начинает вытеснять кураре и ослаблять взаимодействие яда с рецепторами. Основное действующее вещество кураре – a-тубокурарин, который был выделен из растительной смеси ещё в1935 году и в дальнейшем получил распространение в медицинской практике. Его вводят при проведении хирургических операций в качестве средства, расслабляющего мускулатуру; при этом пациент должен находиться на искусственно управляемом дыхании.

Другой яд – a-бунгаротоксин вступает с Н-холинорецепторами в необратимую связь. Он образуется в ядовитых железах бунгаров или крайтов – змей, родственных кобрам. В железах некоторых видов бунгаров содержится до пяти смертельных доз этого яда. С 1970 года очищенные и снабжённые радиоактивной меткой молекулы a-бунгаротоксина стали применять в исследовательских целях. Меченые молекулы необратимо связываются с холинорецепторами, что позволяет, с помощью метки, определять количество таких рецепторов, их расположение и т.п. Таким способом было, например, доказано, что развитие миастении (прогрессирующей мышечной слабости) обусловлено уменьшением количества холинорецепторов, которые, как оказалось, при этой болезни повреждаются аутоантителами.

Не так уж редко встречаются, к сожалению, отравления фосфоорганическими веществами, такими, например, как тиофос, хлорофос, карбофос и т.п. При поступлении этих веществ в организм человека они расщепляются на ещё более токсичные метаболиты, которые обладают антихолинэстеразным действием, т.е. угнетают активность холинэстеразы. В результате прекращается нормальное расщепление ацетилхолина, что нарушает всю обычную деятельность синапса. Это приводит сначала к мышечным судорогам, а затем к параличам и остановке дыхания.

Центральные синапсы, в отличие от нервно-мышечного, образованы тысячами соединений между многими нейронами, в которых могут использоваться десятки нейромедиаторов различной химической природы. При этом следует учитывать, что для каждого нейротрансмиттера существуют специфические рецепторы, которые разными способами управляют хемозависимыми каналами. Кроме того, если в нервно-мышечных синапсах всегда передаётся лишь возбуждение, то центральные синапсы могут быть как возбуждающими, так и тормозными.

В нервно-мышечном синапсе одиночный потенциал действия, достигший пресинаптического окончания, способен привести к выделению достаточного для передачи сигнала количества медиатора и поэтому потенциал концевой пластинки всегда превышает пороговое значение. Одиночные постсинаптические потенциалы центральных синапсов как правило не превышают даже 1 мВ – их среднее значение составляет всего лишь 0,2- 0,3 мВ, что совершенно недостаточно для достижения критической деполяризации. Чтобы её получить, требуется суммарная активность от 50 до 100 потенциалов действия, достигших пресинаптического окончания один за другим – тогда общее количество выделившегося медиатора может оказаться достаточным для того, чтобы сделать деполяризацию постсинаптической мембраны критической.

В возбуждающих синапсах центральной нервной системы используются, так же, как и в нервно-мышечном синапсе, хемозависимые каналы, которые одновременно пропускают ионы натрия и калия. Когда такие каналы открываются при обычном для центральных нейронов значении потенциала покоя (приблизительно -65 мВ), преобладает направленный внутрь клетки деполяризующий ток натрия.

Потенциал действия обычно возникает в триггерной зоне – аксонном холмике, где самая высокая плотность потенциалзависимых каналов и самый низкий порог деполяризации. Здесь оказывается достаточным сдвиг значения мембранного потенциала с -65 Мв до -55 мВ, чтобы возник потенциал действия. В принципе потенциал действия может образоваться и на теле нейрона, но для этого понадобится изменить мембранный потенциал с -65 мВ до приблизительно -35 мВ, т.е. в этом случае постсинаптический потенциал должен быть гораздо больше – около 30 мВ.

Большинство возбуждающих синапсов образуется на ветвях дендритов. У типичного нейрона обычно существует от двадцати до сорока главных дендритов, разделяющихся на множество мелких ветвей. На каждой такой веточке есть две области синаптических контактов: главный стержень и шипики. Возникшие там возбуждающие постсинаптические потенциалы (ВПСП) пассивно распространяются к аксонному холмику, при этом амплитуда этих локальных потенциалов уменьшается пропорционально расстоянию. И, если даже максимальная величина ВПСП в контактной зоне не превышает 1 мВ, то в триггерной зоне обнаруживается и вовсе ничтожный деполяризующий сдвиг.

При таких обстоятельствах критическая деполяризация триггерной зоны возможна лишь в результате пространственной или последовательной суммации одиночных ВПСП (Рис. 5.3).

Пространственная суммация происходит при одновременной возбуждающей активности группы нейронов, аксоны которых конвергируют к одной общей постсинаптической клетке. В каждой из контактных зон образуется небольшой ВПСП, который пассивно распространяется к аксонному холмику. Когда слабые деполяризующие сдвиги достигают его одновременно, суммарный итог деполяризации может составить величину более 10 мВ: только в таком случае мембранный потенциал уменьшается с -65 мВ до критического уровня -55 мВ и возникает потенциал действия.

Последовательная суммация, её ещё называют временной, наблюдается при достаточно частом ритмическом возбуждении пресинаптических нейронов, когда к пресинаптическому окончанию один за другим через короткий промежуток времени проводятся потенциалы действия. В течение всего этого времени выделяется медиатор, что и приводит к увеличению амплитуды ВПСП. В центральных синапсах оба механизма суммации обычно действуют одновременно и это даёт возможность передать возбуждение постсинаптическому нейрону.

Лишь недавно удалось найти некоторые, очень небольшие морфологические различия между возбуждающими и тормозными синапсами – у последних оказалась чуть меньшей ширина синаптической щели, меньше активные зоны, тоньше базальная мембрана, а синаптические пузырьки несколько отличаются по форме. Тормозные синапсы чаще всего образуются на теле нейрона. В них, как и в возбуждающих синапсах, выделяются нейротрансмиттеры, присоединяются к рецепторам постсинаптической мембраны, после чего открываются хемозависимые каналы. Принципиальное отличие тормозных синапсов в том, что открывающиеся каналы предназначаются не для натрия, как в возбуждающих синапсах, а для прохождения ионов хлора или ионов калия. Если откроются каналы для анионов хлора, то они по концентрационному градиенту входят в клетку. В результате сумма отрицательных зарядов в клетке увеличивается и происходит гиперполяризация мембраны: значение мембранного потенциала возрастает с -65 мВ до, например, -70 мВ. Из состояния гиперполяризации возбудить нейрон труднее: здесь понадобится деполяризующий сдвиг не в 10 мВ, как обычно, а не менее 15 мВ, поскольку критический уровень деполяризации мембраны после торможения остаётся прежним, т.е. -55 мВ (Рис. 5.4).

В том случае, когда в тормозном синапсе используются хемозависимые каналы для калия, тоже происходит гиперполяризация, так как калий выходит из клетки по концентрационному градиенту. Следовательно, и в этом варианте чувствительность клетки ко всем возбуждающим сигналам снижается. Таким образом, независимо от того, используются в тормозных синапсах каналы для хлора, что встречается чаще, или для калия, результатом всегда будет гиперполяризующий сдвиг, который называется тормозным постсинаптическим потенциалом (ТПСП).

Что же произойдёт с нейроном, на который одновременно подействуют возбуждающие и тормозные нейроны? На его дендритах появятся небольшие ВПСП, сумма которых немного превышает 10 мВ – этого обычно хватает, чтобы возбудить клетку. Но, когда деполяризующие потенциалы будут распространяться по направлению к аксонному холмику, мембрана тела нейрона окажется гиперполяризованной под действием тормозных синапсов. Произойдёт суммация ВПСП и ТПСП, в результате которой деполяризующий сдвиг либо исчезнет совсем, либо уменьшится, но и в том, и в другом варианте потенциал действия уже не сможет возникнуть. Такой вид торможения активности нейрона называется постсинаптическим.

Наряду с ним встречается ещё один вид торможения, который называется пресинаптическим и наблюдается в аксо-аксональных синапсах: здесь аксон тормозного нейрона образует синапс на окончании возбуждающего нейрона. В таких синапсах обычно используются каналы для ионов хлора – их вход в окончание возбуждающего нейрона уменьшает амплитуду проводящихся по нему потенциалов действия. В связи с этим уменьшается количество медиатора, который выделяется в окончании аксона и, соответственно величина ВПСП.

Различие с тотальным постсинаптическим торможением заключается в том, что пресинаптическое торможение является избирательным – оно блокирует лишь один возбуждающий вход и постсинаптический нейрон сохраняет возможность возбуждаться другими, не подвергнутыми торможению нейронами. Пресинаптическое торможение широко используется, например, для контроля поступающих в ЦНС сенсорных потоков или для регуляции двигательных систем спинного мозга, когда необходимо блокировать поступление лишней или "нежелательной" информации, но сохранить при этом возбудимость постсинаптического нейрона в целом.

Наряду с пресинаптическим торможением встречается и пресинаптическое усиление, когда в аксо-аксональном синапсе действует медиатор, повышающий эффективность возбуждающего нейрона. В целом же аксо-аксональные синапсы выполняют модулирующую функцию: не имея прямого влияния на зону возникновения импульса, они контролируют количество выделяющегося медиатора.

Передаваясь от одного нейрона к другому, возбуждение, если рассуждать теоретически, могло бы распространиться на большинство клеток мозга, в то время как для нормальной деятельности необходимо строго упорядоченное чередование активности определённых групп нейронов, соединённых друг с другом топографически точными связями. Необходимостью упорядочить передачу сигналов, предупредить ненужное распространение возбуждения и определяется функциональная роль тормозных нейронов.

Следует обратить внимание на очень важное обстоятельство: торможение всегда является местным процессом, оно не может, подобно возбуждению, распространяться от одной клетки к другой. Торможение лишь угнетает процесс возбуждения или препятствует самому возникновению возбуждения.

Убедиться в исключительно важной роли торможения помогает простой, но поучительный эксперимент. Если экспериментальному животному ввести некоторое количество стрихнина (это алкалоид семени чилибухи или рвотного ореха), блокирующего только одну разновидность тормозных синапсов в центральной нервной системе, то начнётся неограниченное распространение возбуждения в ответ на любой раздражитель, что приведёт к неупорядоченной активности нейронов, затем возникнут мышечные судороги, конвульсии и, наконец, смерть.

Тормозные нейроны есть во всех областях мозга, например, в спинном мозгу распространены тормозные клетки Реншоу, в коре мозжечка нейроны Пуркинье, звёздчатые клетки и т.д. В качестве тормозных медиаторов чаще других используются гамма-аминомасляная кислота (ГАМК) и глицин, хотя тормозная специфичность синапса зависит не от медиатора, а исключительно от типа хемозависимых каналов: в тормозных синапсах это каналы для хлора или для калия.

Существует несколько весьма характерных, типовых вариантов торможения: возвратное (или антидромное), реципрокное, нисходящее, центральное и т.д. Возвратное торможение позволяет регулировать выходную активность нейрона по принципу отрицательной обратной связи (Рис. 5.5). Здесь возбуждающий какую-либо клетку нейрон одной из коллатералей своего аксона действует ещё и на вставочный тормозной нейрон, который начинает тормозить активность самой возбуждающей клетки. Так, например, мотонейрон спинного мозга возбуждает мышечные волокна, а другая коллатераль его аксона возбуждает клетку Реншоу, которая тормозит активность самого мотонейрона

Реципрокное торможение (от лат. reciprocus – взаимный) наблюдается, например, в тех случаях, когда коллатерали входящего в спинной мозг аксона афферентного нейрона образуют две ветви: одна из них возбуждает мотонейроны мышцы-сгибателя, а другая – тормозной интернейрон, который действует на мотонейрон для мышцы-разгибателя. Благодаря реципрокному торможению мышцы-антагонисты не могут сокращаться одновременно и, если для совершения движения сокращаются сгибатели, то разгибатели должны расслабляться.

Нисходящее торможение впервые описал И. М. Сеченов: он обнаружил, что рефлексы спинного мозга у лягушки замедляются, если её промежуточный мозг раздражать кристалликом поваренной соли. Сеченов назвал такое торможение центральным. Нисходящее торможение может, например, управлять передачей афферентных сигналов: длинные аксоны некоторых нейронов ствола мозга способны тормозить активность интернейронов спинного мозга, получающих информацию о болевом раздражении. Некоторые двигательные ядра ствола мозга могут активировать деятельность тормозных интернейронов спинного мозга, которые, в свою очередь, способны уменьшить активность мотонейронов – такой механизм важен для регуляции тонуса мышц.

5.7. Функциональное значение химических синапсов в переносе информации

Можно с уверенностью сказать, что синапсам принадлежит решающая роль во всей деятельности мозга. Этот вывод обоснован по меньшей мере тремя важными доказательствами:

1. Все химические синапсы функционируют по принципу клапана, поскольку информация в нём может передаваться только от пресинаптической клетки к постсинаптической и никогда – наоборот. Именно этим определяется упорядоченное направление передачи информации в ЦНС.

2. Химические синапсы способны усиливать или ослаблять передаваемые сигналы, причём любая модификация может осуществляться несколькими способами. Эффективность синаптической передачи изменяется в связи с увеличением или уменьшением тока кальция в пресинаптическое окончание, что сопровождается соответствующим увеличением или уменьшением количества выделяющегося медиатора. Деятельность синапса может изменяться в связи с меняющейся чувствительностью постсинаптической мембраны, которая способна уменьшать или увеличивать количество и эффективность функционирования своих рецепторов. Благодаря этим возможностям проявляется пластичность межклеточных соединений, на основе которой синапсы участвуют в процессе научения и формировании следов памяти.

3. Химический синапс представляет собой область действия многих биологически активных веществ, лекарств или иных химических соединений, по той или иной причине поступивших в организм (токсины, яды, наркотики). Одни вещества, имея сходную с медиатором молекулу, конкурируют за право связываться с рецепторами, другие – не позволяют медиаторам своевременно разрушаться, третьи – стимулируют или угнетают выделение медиаторов из пресинаптических окончаний, четвёртые – усиливают или ослабляют действие тормозных медиаторов и т. д. Результатом изменений синаптической передачи в тех или иных химических синапсах может стать появление новых форм поведения.

Большинство известных электрических синапсов образованы большими пресинаптическими аксонами, контактирующими со сравнительно мелкими волокнами постсинаптических клеток. Передача информации в них происходит без химического посредника, а между взаимодействующими клетками очень небольшое расстояние: ширина синаптической щели около 3,5 нм, тогда как в химических синапсах она варьирует от 20 до 40 нм. Кроме того, синаптическую щель пересекают соединительные мостики – специализированные белковые структуры, образующие т.н. коннексоны (от англ. connexion – соединение) (Рис. 5.6).

Коннексоны представляют собой трансмембранные белки цилиндрической формы, которые образованы шестью субъединицами и в центре имеют довольно широкий, около 1,5 нм в диаметре, канал с гидрофильными стенками. Коннексоны соседних клеток располагаются друг против друга так, что каждая из шести субъединиц одного коннексона как бы продолжается субъединицами другого. Фактически коннексоны являются полуканалами, но совмещение коннексонов двух клеток образует полноценный канал, который эти две клетки соединяет. Механизм открывания и закрывания таких каналов состоит во вращательных перемещениях его субъединиц.

Эти каналы обладают малым сопротивлением и потому хорошо проводят электрический ток от одной клетки к другой. Поток положительных зарядов от пресинаптической мембраны возбуждённой клетки вызывает деполяризацию постсинаптической мембраны. Когда такая деполяризация достигает критического значения, открываются потенциалзависимые каналы для натрия и возникает потенциал действия.

Всё происходит очень быстро, без характерной для химических синапсов задержки, связанной с относительно медленной диффузией медиатора от одной клетки к другой. Соединённые электрическими синапсами клетки реагируют как единое целое на поступивший к одной из них сигнал, латентное время между пресинаптическим и постсинаптическим потенциалами практически не определяется.

Направление передачи сигнала в электрических синапсах обусловлено различиями входного сопротивления контактирующих клеток. Обычно большое пресинаптическое волокно одновременно передаёт возбуждение нескольким соединённым с ним клеткам, создавая в них значительное изменение напряжения. Так, например, в хорошо изученном гигантском аксо-аксональном синапсе речного рака толстое пресинаптическое волокно возбуждает несколько значительно уступающих ему в толщине аксонов других клеток.

Электрическая синаптическая передача сигнала оказывается биологически полезной при осуществлении реакций бегства или защиты в случае внезапной опасности. Таким способом, например, синхронно активируются мотонейроны и следом происходит молниеносное движение хвостового плавника у золотой рыбки при реакции бегства. Такая же синхронная активация нейронов обеспечивает залповый выброс маскирующей краски морским моллюском при возникновении опасной ситуации.

Через каналы коннексонов осуществляется ещё и метаболическое взаимодействие клеток. Достаточно большой диаметр пор каналов позволяет проходить не только ионам, но и органическим молекулам средних размеров, в том числе и важным вторичным посредникам, таким, как циклический АМФ, инозитолтрифосфат, а также небольшим пептидам. Этот транспорт, видимо, имеет большое значение в процессе развития мозга.

Резюме

Синапсам принадлежит ключевая роль в организации информационных потоков. Химические синапсы не просто передают сигнал, но они трансформируют его, усиливают, меняют характер кода. Химические синапсы функционируют как клапан: они передают информацию только в одном направлении. Взаимодействие возбуждающих и тормозных синапсов сохраняет наиболее значимую информацию и устраняет несущественную. Эффективность синаптической передачи может увеличиваться или уменьшаться как за счёт меняющейся концентрации кальция в пресинаптическом окончании, так и за счёт изменения количества рецепторов постсинаптической мембраны. Подобная пластичнность синапсов служит предпосылкой для их участия в процессе научения и формировании памяти. Синапс представляет собой мишень для действия многих веществ, способных блокировать или, наоборот, стимулировать синаптическую передачу. Передача информации в электрических синапсах происходит с помощью коннексонов, имеющих малое сопротивление и проводящих электрический ток от аксона одной клетки к аксонам другой.

Вопросы для самоконтроля

61. Что происходит с выделившимся из пресинаптического окончания медиатором?

А. Он диффундирует через постсинаптическую мембрану; Б. Присоединяется к рецепторам постсинаптической мембраны; В. Переносится через постсианптическую мембрану активным транспортом; Г. Связывается белками синаптической жидкости; Д. Накапливается в синаптической щели, тем самым уменьшая электрическое сопротивление.

62. В норме на 1 кв. мкм концевой пластинки находится примерно 10 000 холинорецепторов. Что произойдёт вследствие уменьшения количества рецепторов при миастении?

А. Уменьшение синтеза медиатора; Б. Уменьшение тока ионов кальция через пресинаптическое окончание; В. Уменьшение величины потенциала концевой пластинки; Г. Уменьшение амплитуды потенциалов действия на мышечной мембране; Д. Инактивация холинэстеразы в синаптической щели.

63. От чего непосредственно зависит величина потенциала концевой пластинки?

А. От интенсивности синтеза ацетилхолина в мотонейроне; Б. От концентрации ионов кальция в пресинаптическом окончании; В. От концентрации не связанного с рецепторами медиатора в синаптической щели; Г. От количества не связанных с ацетилхолином рецепторов постсинаптической мембраны; Д. От количества холинорецепторов, присоединивших к себе медиатор.

64. Что является пусковым моментом для выделения медиатора из пресинаптического окончания?

А. Ток ионов калия из пресинаптического окончания; Б. Ток ионов хлора в пресинаптическое окончание; В. Выход ионов кальция из пресинаптического окончания; Г. Ток ионов натрия в пресинаптическое окончание; Д. Повышение концентрации ионов кальция в пресинаптическом окончании.

65. Каким транспортным механизмом медиатор проходит через синаптическую щель к постсинаптической мембране?

А. Диффузия; Б. Осмос; В. Активный транспорт; Г. С помощью специального переносчика; Д. Используются все механизмы транспорта.

66. Молекулы змеиного яда a-бунгаротоксина могут присоединяться к холинорепторам концевой пластинки. Что произойдёт в результате такого соединения?

А. Инактивация холинэстеразы; Б. Уменьшение образования ацетилхолина; В. Уменьшение величины потенциала концевой пластинки; Г. В постсинаптической мембране откроются каналы для натрия; Д. В постсинаптической мембране откроются каналы для кальция.

67. Преимущественный ток каких ионов обусловливает формирование потенциала концевой пластинки?

А. Кальция; Б. Хлора; В. Натрия; Г. Калия; Д. Всех катионов.

68. Какую функцию выполняет ацетилхолинэстераза в нервно-мышечном синапсе?

А. Увеличивает величину потенциала концевой пластинки; Б. Увеличивает продолжительность потенциала концевой пластинки; В. Стимулирует синтез медиатора; Г. Расщепляет медиатор, связавшийся с холинорецепторами; Д. Обеспечивает своевременное закрытие хемозависимых каналов.

69. Что из перечисленного ниже характерно для потенциала концевой пластинки?

А. Образуется при использовании хемозависимых каналов; Б. Образуется при использовании потенциалзависимых каналов; В. Образуется по правилу "всё или ничего"; Г. Имеет равную с потенциалом действия амплитуду; Д. Имеет равную с потенциалом действия длительность.

70. К чему приводит действие яда кураре на нервно-мышечный синапс?

А. Инактивируется ацетилхолинэстераза; Б. Угнетается синтез ацетилхолина; В. Блокируется выделение ацетилхолина; Г. Блокируются холинорецепторы; Д. Расщепляется ацетилхолин.

71. Что из указанного ниже характерно для возбуждающих постсинаптических потенциалов центральных синапсов и не характерно для потенциала концевой пластинки в нервно-мышечном синапсе?

А. Использование хемозависимых каналов; Б. Деполяризующий сдвиг формируется вследствие тока ионов натрия; В. Деполяризующий сдвиг, как правило, подпороговый; Г. При пороговом значении постсинаптического потенциала возникают потенциалы действия; Д. Возникновение потенциалов действия обусловлено использованием потенциалзависимых каналов.

72. Что из указанного ниже характеризует тормозной постсинаптический потенциал?

А. Ток ионов натрия через постсинаптическую мембрану; Б. Подпороговая деполяризация постсинаптической мембраны; В. Пороговая деполяризация постсинаптической мембраны; Г. Возникновение потенциалов действия на постсинаптической мембране; Д. Гиперполяризация постсинаптической мембраны.

73. Каналы каких ионов могут использоваться в тормозных синапсах?

А. Калия; Б. Натрия; В. Кальция; Г. Магния; Д. Всех катионов.

74. Величина мембранного потенциала постсинаптического нейрона равна -70 мВ, а уровень критической деполяризации – -50 мВ. С дендритами этой клетки две группы возбуждающих нейронов образуют синапсы, в которых возникают возбуждающие постсинаптические потенциалы, суммируемые как ВПСП 1 и ВПСП 2. При каком из указанных ниже вариантов в постсинаптическом нейроне может возникнуть потенциал действия?

А. ВПСП 1 – 7 мВ, ВПСП – 2 – 9 мВ; Б. ВПСП 1 – 8 мВ, ВПСП 2 – 11 мВ; В. ВПСП 1 – 15 мВ, ВПСП 2 – 4 мВ; Г. ВПСП 1 – 5, ВПСП 2 – 13 мВ; Д. ВПСП 1 – 12, ВПСП 2 – 9 мВ.

75. Мембранный потенциал постсинаптического нейрона равен -80 мВ, а критический уровень деполяризации – -52 мВ. На его дендритах возникают возбуждающие постсинаптические потенциалы, а на теле – тормозные. При каком значении ВПСП и ТПСП постсинаптический нейрон должен возбудиться?

А. ВПСП 30 мВ, ТПСП 11 мВ; Б. ВПСП 35 мВ, ТПСП 12 мВ; В. ВПСП 25 мВ, ТПСП 4 мВ, Г. ВПСП 27 мВ, ТПСП 6 мВ; Д. ВПСП 35 мВ, ТПСП 6 мВ.

76. Какой из перечисленных ниже медиаторов чаще других выполняет роль тормозного нейротрансмиттера?

А. Ацетилхолин; Б. ГАМК; В. Адреналин; Г. Норадреналин; Д. Дофамин.

77. Что из указанного ниже характерно для пресинаптического торможения?

А. Образование ТПСП на теле постсинаптического нейрона; Б. Гиперполяризация тела постсинаптического нейрона; В. Постсинаптический нейрон временно перестаёт возбуждаться, независимо от источников входной информации; Г. Постсинаптический нейрон временно перестаёт возбуждаться от одного из источников входной информации; Д. Постсинаптический нейрон оказывается временно неспособным генерировать потенциалы действия.

78. Если топографические связи между двумя группами нейронов всегда обусловливают торможение в одной из них при возбуждении другой и наоборот, то такое торможение называется:

А. Возвратным; Б. Реципрокным; В. Центральным; Г. Нисходящим; Д. Пресинаптическим.

79. Если возбуждающий нейрон подействует на тормозной вставочный нейрон, который образует синапс с этим же возбуждающим нейроном, то наблюдаемое торможение определяется как:

А. Возвратное, Б. Реципрокное; В. Нисходящее; Г. Центральное; Д. Вставочное.

80. Что характерно для электрических синапсов?

А. Особенно высокое сопротивление передающимся сигналам; Б. Увеличенная ширина синаптической щели; В. Использование особого типа рецепторов; Г. Использование особого типа потенциалзависимых каналов для натрия; Д. Отсутствие синаптической задержки.

Синапс- специализированные структуры, которые обеспечивают передачу возбуждения с одной возбудимой клетки на другую. Понятие СИНАПС введено в физиологию Ч.Шеррингтоном (соединение, контакт). Синапс обеспечивает функциональную связь между отдельными клетками. Подразделяются на нервно-нервные, нервно-мышечные и синапсы нервных клеток с секреторными клетками (нервно-железистые). В нейроне выделяется три функциональных отдела: сома, дендрит, аксон. Поэтому между нейронами существуют все возможные комбинации контактов. Например, аксо-аксональный, аксо-соматический и аксо-дендритный.

Классификация.

1)по местоположению и принадлежности соответствующим структурам:

- периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

- центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2)механизму действия- возбуждающие и тормозящие;

3)способу передачи сигналов- химические, электрические, смешанные.

4)химические классифицируют по медиатору, с помощью которого осуществляется передача- холинергические, адренергические, серотонинергические, глицинергически. и т.д.

Строение синапса.

Синапс состоит из следующих основных элементов:

Пресинаптической мембраны (в нервно-мышечном синапсе - это концевая пластинка):

Постсинаптической мембраны;

Синаптической щели. Синаптическая щель заполнена олигосахаридсодержащей соединительной тканью, которая играет роль поддерживающей структуры для обеих контактирующих клеток.

Систему синтеза и освобождения медиатора.

Систему его инактивации.

В нервно-мышечном синапсе пресиниптическая мембрана-часть мембраны нервного окончания в области контакта его с мышечным волокном, постсинаптическая мембрана- часть мембраны мышечного волокна.

Строение нервно-мышечного синапса.

1 -миелинизированное нервное волокно;

2 -нервное окончание с пузырьками медиатора;

3 -субсинаптическая мембрана мышечного волокна;

4 -синаптическая щель;

5-постсинаптическая мембрана мышечного волокна;

6 -миофибриллы;

7 -саркоплазма;

8 -потенциал действия нервного волокна;

9 -потенциал концевой пластинки (ВПСП):

10 -потенциал действия мышечного волокна.

Часть постсинаптической мембраны, которая расположена напротив пресинаптической, называется субсинаптической мембраной. Особенностью субсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору и наличие хемозависимых каналов. В постсинаптической мембране, за пределами субсинаптической, имеются потенциалозависимые каналы.

Механизм передачи возбуждения в химических возбуждающих синапсах . В 1936 году Дейл доказал, что при раздражении двигательного нерва в его окончаниях в скелетной мышце выделяется ацетилхолин. В синапсах с химической передачей возбуждение передается с помощью медиаторов (посредников) .Медиаторы – химическкие вещества, которые обеспечивают передачу возбуждения в синапсах. Медиатором в нервно-мышечном синапсе является ацетилхолин, в возбуждающих и тормозных нервно-нервных синапсах - ацетилхолин, катехоламины - адреналин, норадреналин, дофамин; серотонин; нейтральные аминокислоты - глутаминовая, аспарагиновая; кислые аминокислоты - глицин, гамма-аминомасляная кислота; полипептиды: вещество Р, энкефалин, соматостатин; другие вещества: АТФ, гистамин, простагландины.

Медиаторы в зависимости от их природы делятся на несколько групп:

Моноамины (ацетилхолин, дофамин, норадреналин,серотонин.);

Аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.);

Нейропептиды (вещество Р, эндорфины, нейротензин, АКТГ,ангиотензин, вазопрессин, соматостатин и др.) .

Накопление медиатора в пресинаптическом образовании происходит за счет его транспорта из околоядерной области нейрона с помощью быстрого акстока; синтеза медиатора, протекающего в синаптических терминалях из продуктов его расщепления; обратного захвата медиатора из синаптическои щели.

Пресинаптическое нервное окончание содержит структуры для синтеза нейромедиатора. После синтеза нейромедиатор упаковывается в везикулы. При возбуждении эти синаптические везикулы сливаются с пресинаптической мембраной и нейромедиатор высвобождается в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором. В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов и деполяризуется. Это приводит к возникновению возбуждающего постсинаптического потенциала и затем потенциала действия. Медиатор синтезируется в пресинаптической терминали из материала, поступающего сюда аксональным транспортом. Медиатор "инактивируется", т.е. либо расщепляется, либо удаляется из синаптической щели посредством механизма обратного транспорта в пресинаптическую терминаль.

Значение ионов кальция в секреции медиатора .

Секреция медиатора невозможна без участия в этом процессе ионов кальция. При деполяризации пресинаптической мембраны кальций входит в пресинаптическую терминаль через специфические потенциалозависимые кальциевые каналы в этой мембране. Концентрация кальция в аксоплазме 110 -7 М, при вхождении кальция и повышения его концентрации до 110 - 4 М происходит секреция медиатора. Концентрация кальция в аксоплазме после окончания возбуждения снижается работой систем: активного транспорта из терминали, поглощением митохондриями, связыванием внутриклеточными буферными системами. В состоянии покоя происходит нерегулярное опорожнение везикул, при этом происходит выход не только единичных молекул медиатора, но и выброс порций, квантов медиатора. Квант ацетилхолина включает примерно 10000 молекул.