От зависит мышечная сила человека. От чего зависит сила мышц

Мы перевели, переработали и отредактировали грандиозную базовую статью Грега Нуколса о том, как взаимосвязан объем и сила мышц. В статье подробно объясняется, к примеру, почему средний пауэрлифтер на 61% сильнее среднего бодибилдера при том же объеме мышц.

Наверняка вам встречалась такая картина в спортзале: огромный мускулистый парень делает приседания с 200-килограммовой штангой, пыхтя и делая небольшое количество повторений. Затем с такой же штангой работает парень с намного менее массивными ногами, но легко делает большее количество повторений.

Аналогичная картина может повторяться и в жиме или становой. Да и из курса школьной биологии нас учили: сила мышцы зависит от площади поперечного сечения (грубо говоря – от толщины), однако наука показывает, что это сильное упрощение и дело обстоит не совсем так.

Площадь поперечного сечения мышцы.

В качестве примера посмотрите, как 85-килограммовый парень жмет от груди 205 кг:

Однако гораздо более массивные ребята не могут приблизиться к таким показателям в жиме.

Или вот 17-летний атлет приседает со штангой 265 кг:

При этом его объемы намного меньше многих атлетов, кому до такого результата далеко.

Ответ прост: на силу влияет много других факторов, кроме объема мышц

Средний мужчина весит около 80 кг. Если человек – не тренированный, то тогда около 40% веса его тела составляют скелетные мышцы или около 32 кг. Несмотря на то, что рост мышечной массы очень сильно зависит от генетики, в среднем мужчина способен за 10 лет тренировок увеличить свою мышечную массу на 50%, то есть добавить к своим 32 кг мышц еще 16.

Скорее всего 7-8 кг мышц из этой прибавки добавится в первый год упорных тренировок, еще 2-3 кг – за следующие пару лет, а остальные 5-6 кг – за 7-8 лет упорных тренировок. Это типичная картина роста мышечной массы. С ростом мышечной массы примерно на 50% сила мышц возрастет в 2-4 раза.

Грубо говоря, если в первый день тренировок человек может поднять на бицепс вес в 10-15 кг, то впоследствии этот результат может вырасти до 20-30 кг.

С приседом: если в первые тренировки вы приседали с 50-килограммовой штангой, этот вес может вырасти до 200 кг. Это не научные данные, просто для примера – как могут расти силовые показатели. При подъеме на бицепс сила может вырасти примерно в 2 раза, а вес в приседаниях – в 4 раза. Но при этом объем мышц вырос только на 50%. То есть получается, что в сравнении с ростом массы, сила растет в 4-8 раз больше.

Безусловно мышечная масса имеет важное значение для силы, но, возможно, не определяющее. Давайте пройдемся по основным факторам, влияющим на силу и массу.

Мышечные волокна

Как показывают исследования: чем больше размер мышечного волокна, тем больше его сила.

На этом графике показана явная зависимость размеров мышечных волокон и их силы:

Как зависит сила (вертикальная шкала) от размера мышечных волокон (горизонтальная шкала). Исследование: From Gilliver, 2009 .

Однако если абсолютная сила стремится к росту при бОльшем объеме мышечных волокон, относительная сила (сила в соотношении с размером) — наоборот — падает .

Давайте разберемся почему так происходит.

Есть показатель для определения силы мышечных волокон относительно их объема — “specific tension” (переведем его как «удельная сила»). Для этого нужно максимальную силу разделить на площадь поперечного сечения:

Мышечные волокна: удельная сила волокон бодибилдеров на 62% ниже лифтеров

Так вот дело в том, что удельная сила очень сильно зависит от типа мышечных волокон .

В этом исследовании ученые выяснили, что удельная сила мышечных волокон профессиональных бодибилдеров на целых 62% ниже, чем у профессиональных лифтеров .

То есть, условно говоря, мышцы среднего пауэрлифтера сильнее на 62% мышц среднего бодибилдера при одинаковом объеме.

Более того, мышечные волокна бодибилдеров также слабее на 41%, чем у нетренированных людей из расчета на их площадь поперечного сечения. То есть из расчета на квадратный сантиметр толщины, мышцы бодибилдеров слабее, чем у тех, кто вообще не тренировался (но в целом, бодибилдеры, конечно, сильнее за счет общего объема мышц).

В этом исследовании сравнили разные мышечные волокна и выяснили, что самые сильные мышечные волокна в 3 раза сильнее самых слабых той же толщины — это очень большая разница.

Мышечные волокна быстрее растут в площади сечения, чем в силе

Так вот оба этих исследования показали, что с увеличением размера мышечных волокон их сила к толщине падает . То есть в размерах они растут больше, чем в силе .

Зависимость такая: при удвоении площади поперечного сечения мышцы ее сила вырастает только на 41%, а не в 2 раза .

В этом плане с силой мышечного волокна лучше коррелирует диаметр волокна, а не площадь сечения (внесите это исправление в школьные учебники по биологии!)

В конечном итоге все показатели ученые свели вот к такому графику:

По горизонтали: увеличение площади поперечного сечения мышцы. Синяя линия — рост диаметра, красная — общий рост силы, желтая — рост удельной силы (на сколько сила увеличивается при увеличении площади поперечного сечения).

Вывод, который можно сделать: с ростом объема мышц растет и сила, однако прирост размера мышцы (т.е. площади поперечного сечения) обгоняет прирост силы . Это усредненные показатели, собранные из целого ряда исследований и в некоторых исследованиях данные разнятся.

К примеру, в этом исследовании за 12 недель тренировок у подопытных площадь сечения мышц выросла в среднем на 30%, но при этом удельная сила не изменилась (то есть, читаем между строк, сила тоже увеличилась примерно на 30%).

Результаты этого исследования схожи: площадь поперечного сечения мышцы увеличилась у участников на 28-45% после 12 недель тренировок, но удельная сила не изменилась.

С другой стороны, эти 2 исследования (раз и два) показали увеличение удельной силы мышц при отсутствии роста самих мышц в объеме. То есть сила выросла, а объем — нет и благодаря этому сочетанию, получается, выросла удельная сила.

Во всех этих 4 исследованиях сила росла в сравнении с диаметром мышцы, но в сравнении с площадью поперечного сечения сила росла только в том случае, если мышечные волокна не росли.

Итак, давайте подытожим важную тему с мышечными волокнами:

  • Люди сильно отличаются по количеству мышечных волокон того или другого типа . Помните: удельная сила мышечных волокон у лифтеров (тренирующих силу) в среднем на 61% больше, чем у бодибилдеров (тренирующих объем). Грубо говоря, при одинаковых по объему мышцах лифтерские сильнее в среднем на 61%.
  • Самые слабые мышечные волокна в 3 раза слабее самых сильных . Их количество у каждого человека определяется генетически. Это означает, что гипотетически максимально возможная разница в силе мышц одного и того же объема — различается до 3 раз.
  • Удельная сила (сила на квадратный сантиметр поперечного сечения) не всегда растет с тренировками . Дело в том, что площадь поперечного сечения мышц растет в среднем быстрее, чем сила.

Место прикрепления мышц

Важный фактор силы — это то, как крепятся мышцы к костям и длина конечностей. Как вы помните из школьного курса физики — чем больше рычаг, тем легче поднимать вес.

Если прилагать усилие в точке А, то потребуется намного больше силы для подъема того же веса по сравнению с точкой B.

Соответственно, чем дальше мышца прикреплена (и чем короче конечность) — тем больше рычаг и тем бОльший вес можно поднять. Этим отчасти объясняется, почему некоторые довольно худые ребята способны поднимать намного больше некоторых особо объемных.

К примеру, в этом исследовании говорится, что разница в силе в зависимости от места прикрепления мышц в коленном суставе у разных людей составляет 16-25%. Тут уж как повезло с генетикой.

Причем, с ростом мышц в объеме момент силы увеличивается: это происходит потому, что с ростом мышцы в объеме «угол атаки» немного меняется и этим отчасти объясняется то, что сила растет быстрее объема.

В исследовании Andrew Vigotsky есть отличные картинки, наглядно демонстрирующие, как это происходит:

Самое главное — это заключение: последняя картинка, демонстрирующая, как с ростом толщины мышцы (площади поперечного сечения) — меняется угол приложения усилий, а значит и двигать рычаг более объемным мышцам становится легче.

Способность нервной системы активировать больше волокон

Еще один фактор силы мышц вне зависимости от объема — способность ЦНС (центральной нервной системы) активировать как можно большее количество мышечных волокон для сокращения (и расслаблять волокна — антагонисты).

Грубо говоря, способность максимально эффективно передавать мышечным волокнам правильный сигнал — на напряжение одних и расслабление других волокон. Вы наверняка слышали, что в обычной жизни мы способны передавать мышцам лишь определенное нормальное усилие, но в критический момент сила может вырастать многократно. В этом месте обычно приводятся примеры, как человек поднимает автомобиль, чтобы спасти жизнь близкого (и таких примеров действительно довольно много).

Впрочем, научные исследования пока не смогли доказать это в полной мере.

Ученые сравнивали силу «добровольного» сокращения мышц, а затем с помощью электростимуляции добивались еще большего — 100% напряжения всех мышечных волокон.

В результате оказалось, что «добровольные» сокращения составляют около 90-95% от максимально возможной сократительной силы , которой добивались с помощью электростимуляции (непонятно только какую погрешность и влияние такие «стимулирующие» условия оказали на мышцы-антагонисты, которые нужно расслаблять для получения большей силы — прим. Зожника ).

Ученые и автор текста делают выводы: вполне возможно, что некоторые люди смогут значительно увеличить силу, натренировав передачу сигналов мозга к мышцам, но большинство людей не способны значительно увеличить силу только за счет улучшения способности активировать больше волокон.

Нормализованная сила мышцы (НСМ)

Максимальная сократительная сила мышцы зависит от объемов мышцы, силы мышечных волокон, из которых она состоит, от «архитектуры» мышцы, грубо говоря, от всех факторов, что мы указали выше.

Объем мышцы согласно исследованиям отвечает примерно за 50% разницы в силовых показателях у разных людей.

Еще 10-20% разницы в силе объясняют «архитектурные» факторы, такие как место прикрепления, длина фасций.

Остальные факторы, отвечающие за оставшиеся 30-40% разницы в силе, вообще не зависят от размеров мышц .

Для того, чтобы рассмотреть эти факторы важно ввести понятие — нормализованная сила мышцы (НСМ) — это сила мышцы в сравнении с площадью ее сечения. Грубо говоря, насколько сильна мышца по сравнению со своим размером .

Большинство исследований (но не все) показывают, что НСМ растет по мере тренировок. Но при этом, как мы рассмотрели выше (в разделе про удельную силу), сам по себе рост объема не дает такой возможности, это значит, что рост силы обеспечивается не только ростом объема, улучшением прохождения мышечных сигналов, а другими факторами (теми самыми, что отвечают за те оставшиеся 30-40% разницы в силе).

Что это за факторы?

Улучшение качества соединительных тканей

Один из этих факторов — с ростом тренированности улучшается качество соединительной ткани, передающей усилия от мышц к костям . С ростом качества соединительной ткани скелету передается бОльшая часть усилий, а значит растет сила при том же объеме (то есть растет нормализованная сила).

Согласно исследованию до 80% силы мышечного волокна передается окружающим тканям, которые прикрепляют мышечные волокна к фасциям с помощью ряда важных белков (endomysium, perimysium, epimysium и другие). Эта сила передается сухожилиям, увеличивая общую передаваемую силу от мышц к скелету.

В этом исследовании , к примеру, показано, что ДО тренировок НСМ (сила всей мышцы на площадь поперечного сечения) была на 23% выше, чем удельная сила мышечных волокон (сила мышечных волокон на площадь поперечного сечения этих волокон).

А ПОСЛЕ тренировок НСМ (удельная сила всей мышцы) была на 36% выше (удельной силы мышечных волокон). Это означает, что сила всей мышцы при тренировках растет лучше, чем сила суммы всех мышечных волокон .

Ученые связывают это с ростом соединительных тканей, позволяющих эффективнее передавать силу от волокон к костям.

Сверху и снизу схематично показаны сухожилия — между ними — мышечное волокно. С ростом тренированности (правый рисунок) растет и соединительная ткань вокруг мышечных волокон, количество и качество соединений, позволяя эффективнее передавать усилие мышечного волокна к сухожилиям.

Идея о том, что с ростом тренированности улучшается качество волокон передающих усилие (и рисунок выше) взяты из исследования 1989 года и пока это по большей части теория.

Впрочем, есть исследование 2010 года , поддерживающее эту позицию. В ходе этого исследования при не изменившихся показателях мышечных волокон (удельная сила, пиковая сила) общая сила всей мышцы в среднем выросла на 17% (но с большим разбросом у разных людей: от 6% до 28%).

Антропометрия как фактор силы

В дополнение ко всем перечисленным факторам силы мышц, общая антропометрия тела также влияет на количество выдаваемой силы и насколько эффективно эта сила может передаваться при сгибании суставов (причем, независимо от момента силы отдельных суставов).

Возьмем для примера приседание со штангой. Гипотетическая ситуация: 2 одинаково тренированных человека с мышцами одинакового размера и состава волокон, идентично прикрепленные к костям. Если при этом у человека А бедро длиннее на 20%, чем у человека B, то человек B должен гипотетически приседать с весом на 20% больше .

Однако в реальности все происходит не совсем так, в связи с тем, что при изменении длины костей пропорционально меняется и место прикрепления мышц.

Таким образом, если у человека А бедро длиннее на 20%, то и место прикрепления мышц к кости бедра (величина рычага) также пропорционально — на 20% дальше — а значит, длина бедра нивелируется выигрышем в прикреплении мышцы дальше от сустава. Но это в среднем . В реальности антропометрические данные, конечно, разнятся от человека к человеку.

Например, есть наблюдение , что пауэлифтеры с более длинной голенью и коротким бедром склонны приседать с бОльшим весом, чем те, у кого бедро длиннее относительно голени . Аналогичное наблюдение и по поводу длины плеча и жима штанги от груди.

Независимо от всех остальных факторов антропометрия тела вносит коррективу в силу, однако измерение этого фактора представляет сложность, так как сложно отделить его от других.

Специфичность тренировок

Вы прекрасно знаете о специфичности тренировок: что тренируешь — то и улучшается. Наука говорит, что специфичность работает в отношении самых разных аспектов тренировок. Значительная часть этого эффекта работает благодаря тому, что нервная система учится эффективнее совершать определенные движения.

Вот простой пример. Это исследование часто используют в качестве примера, иллюстрирующего принцип специфичности:

  • 1 группа тренировалась с весом 30% от — по 3 повторения до мышечного отказа.
  • 2 группа тренировалась с весом 80% от 1ПМ — и делала только 1 повторение до мышечного отказа.
  • 3 группа тренировалась с весом 80% от 1ПМ — по 3 повторения до мышечного отказа.

Наибольшего улучшения в силе ожидаемо добилась группа 3 — тренировки с тяжелым весом и 3 подхода в упражнении.

Однако когда в конце исследований среди всех групп проверяли максимальное количество повторений с весом 30% от 1ПМ, то наилучший результат показала группа, которая и тренировалась с 30% от 1ПМ. Соответственно, при проверке максимального веса на 1ПМ результаты лучше выросли у тех, кто тренировался с 80% от 1ПМ.

Еще одна любопытная деталь в этом исследовании: когда стали проверять как изменились результаты в статической силе (ее не тренировали ни в одной из 3 групп) — то результаты в росте этого показателя были одинаковы, так как все 3 группы не тренировали специфично этот силовой показатель.

С ростом опыта и оттачиванием техники связан рост силы. Причем, в комплексных многосуставных упражнениях, где задействованы крупные мышечные группы эффект от тренировок больше, чем в небольших мышцах.

На этом графике видно как с ростом количества повторений (горизонтальная шкала) уменьшается доля ошибок в упражнении.

Сила мышцы может быть определена как максимальное напряжению, которое она развивает в условиях изометрического сокращения.

Измерение мышечной силы у человека осуществляется при произвольном напряжении мышц (например, динамометрия). Поэтому когда говорят о мышечной силе человека, практически всегда речь идет о максимальной произвольной мышечной силе , т. е. о суммарной величине изометрического напряжения (точнее - о суммарном моменте) группы мышц при максимальном произвольном усилии испытуемого. Максимальная произвольная мышечная сила зависит от двух групп факторов, которые можно обозначить как мышечные (периферические) факторы и координационные (нервные) факторы.

К мышечным (периферическим) факторам относятся:

· механические условия действия мышечной тяги – плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

Этот фактор менее всего зависит от желаний или возможностей человека, его анатомические особенности определены геномом, а условия, при которых следует развить максимальную силу, специально создаются разве что на соревнованиях. Однако если ничего не мешает, человек или другой организм будет стремиться занять наиболее выгодное (удобное) положение для получения максимального результата движения (прыжка, удара, толчка и т.д.).

· поперечник активируемых мышц , так как при прочих равных условиях проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц.

Это, пожалуй, самый широко обсуждаемый фактор, и чаще всего естественно и искусственно изменяемый фактор. Действительно, максимальная сила мышцы зависит от числа мышечных волокон, составляющих данную мышцу, и от толщины этих волокон. Число и толщина их определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в кг/см 2 . Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине, а именно перпендикулярно ходу волокон, что важно учитывать при расчете относительной силы для мышц с косым расположением волокон.

Поперечный разрез мышцы, перпендикулярный ходу ее волокон, позволяет получить физиологический поперечник мышцы . Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим, Отношение максимальной силы мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы . Она колеблется в пределах 4 - 8 кг/см 2 .

Поскольку сила мышцы зависит от ее поперечника, увеличение последнего сопровождается ростом силы данной мышцы. Увеличение мышечного поперечника в результате мышечной тренировки называется рабочей гипертрофией мышцы. Мышечные волокна, являющиеся высокоспециализированными дифференцированными клетками не способны к делению с образованием новых волокон. Рабочая гипертрофия мышцы происходит отчасти за счет продольного расщепления, а главным образом за счет утолщения (увеличения объема) мышечных волокон.


Можно выделить два основных типа рабочей гипертрофии мышечных волокон. Первый тип (саркоплазматический) – утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. несократительной части мышечных волокон. Этот тип гипертрофии приводит к повышению метаболических резервов мышцы: запасов гликогена, безазотистых веществ, креатинфосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может в какой-то мере вызывать некоторое утолщение мышцы.

Первый тип рабочей гипертрофии мало влияет на рост силы мышц, но зато значительно повышает способность их к продолжительной работе, т. е. выносливость.

Второй тип рабочей гипертрофии (миофибриллярный) связан с увеличением объема миофибрилл, т. е. собственно сократительного аппарата мышечных волокон. При этом мышечный поперечник может увеличиваться не очень значительно, так как в основном возрастает плотность укладки миофибрилл в мышечном волокне. Второй тип рабочей гипертрофии ведет к значительному росту максимальной силы мышцы. Существенно увеличивается и абсолютная сила мышцы, тогда как при первом типе рабочей гипертрофии она или совсем не изменяется или даже несколько уменьшается.

Преимущественное развитие первого или второго типа рабочей гипертрофии определяется характером мышечной тренировки. Вероятно, длительные динамические упражнения с относительно небольшой нагрузкой вызывают рабочую гипертрофию главным образом первого типа (преимущественное увеличение объема саркоплазмы, а не миофибрилл). Изометрические упражнения с применением больших мышечных напряжений (более 2/3 от максимальной произвольной силы тренируемых мышечных групп), наоборот, способствуют развитию рабочей гипертрофии второго типа (миофибриллярной гипертрофии).

· исходная длина мышц , при которой начинается её сокращение;

Для развития максимальной силы мышца перед началом сокращения должна быть в состоянии длины покоя, то есть максимально расслаблена, но не растянута (Рис.2.А). Этот фактор специально учитывают спортсмены в тех видах спорта, где необходим высокий силовой результат. Например, тяжелоатлеты непосредственно перед поднятием штанги пытаются максимально расслабить мышцы, интенсивно встряхивая верхними и нижними конечностями.

Действительно, сточки зрения теории скользящих нитей (см. предыдущее занятие) при сокращении тонкие нити протягиваются (скользят) вдоль толстых. Усилие, которое при этом развивается, будет определяться исходной степенью перекрывания толстых и тонких нитей в саркомере.

Если исходная длина мышцы больше длины покоя (мышца исходно растянута) степень перекрывания головок миозина с нитями актина уменьшается (Рис. 2Б). Другими словами часть головок миозина еще в покое не контактирует с актином, а значит и не участвует в сокращении. Усилие, развиваемое сокращающейся мышцей, при этом снижается.

Если исходная длина мышцы меньше длины покоя (мышца исходно сокращена, а значит укорочена), то расстояние на которое саркомер, а следовательно и мышца может укоротиться при сокращении уменьшается (Рис. 2В).

Мышечную силу оценивают по максимальной силе, развиваемой мышцей или группой мышц при сокращении. Слабость или неравномерный тонус мышц может мешать движению, и эти нарушения должны быть устранены в процессе медицинской реабилитации. Мышечная Сила зависит от целого ряда факторов: физиологических, биомеханических, нервно-мышечных. В зависимости от фазы заживления используются разные методы увеличения мышечной силы, так как в каждой из фаз различаются и задачи, и достижимые уровни работоспособности.

Максимальная сила, которую может развить мышца, напрямую зависит от физиологической площади поперечного сечения мышечных волокон: с увеличением диаметра мышцы растет и сила. На силу влияет также длина мышцы перед сокращением: мышца способна развить максимальную силу , если перед сокращением она находилась в расслабленном состоянии (сохраняла «длину покоя»), когда нити актина и миозина связаны максимальным числом поперечных мостиков (зона перекрывания актиновых и миозиновых нитей максимальна). По мере укорочения мышцы сила уменьшается, так как уменьшается и возможность миофиламентов сдвигаться далее относительно друг друга. При растяжении мышечных волокон до большей, чем в покое, длины сила уменьшается, но повышается пассивное напряжение. Таким образом, растяжение соединительной ткани фактически приводит к приросту силы. Следовательно, общая сила, развиваемая мышцей (включая активную сократительную силу и пассивное напряжение), увеличивается по мере удлинения мышцы.

Сила зависит от сократительных свойств мышечных волокон. Выделяют несколько типов мышечных волокон, различающихся силой и скоростью сокращения и устойчивостью к утомлению. Красные, или медленные, волокна характеризуются незначительной силой, но устойчивы к утомлению. Промежуточные и белые, или быстрые, волокна способны развивать значительное напряжение, но быстро утомляются. Таким образом, сила сокращения в значительной степени зависит от содержания в разных типов.

Очередность вовлечения мышечных волокон зависит от вида нагрузки. При не тяжелой нагрузке, требующей выносливости, первыми активируются мелкие мотонейроны, иннервирующие красные мышечные волокна. По мере того как потребность в силе возрастает, начинают активироваться крупные мотонейроны, иннервирующие белые мышечные волокна.

Помимо типа волокон на силу влияют скорость и тип мышечного сокращения. Наибольшая сила достигается при эксцентрических сокращениях, когда мышца, сокращаясь, удлиняется. По мере увеличения скорости сокращения начинает расти напряжение, отчасти вследствие усиления сухожильного рефлекса и растяжения последовательных упругих элементов. Концентрические сокращения всегда дают меньшую силу. По мере того как мышца укорачивается и скорость сокращения возрастает, отмечается снижение общего напряжения, так как мышце не хватает времени для развития силы. Существует обратная зависимость между скоростью укорочения мышцы при концентрических сокращениях и развиваемой ею силой. Чтобы мышечное сокращение достигло соответствующего напряжения и мышца не утомлялась, ей необходимы достаточные запасы энергии и хорошее кровоснабжение. На силу, развиваемую мышцей, влияет также характер спортсмена, так как выраженность мотивации и желание прикладывать усилие, чтобы развить максимальную силу , зависят от человека.

В основе увеличения мышечной силы лежат такие изменения, как гипертрофия и гиперплазия. Гипертрофия - это увеличение размеров мышечных волокон вследствие увеличения в них числа сократительных белков и миофибрилл и повышение плотности капиллярной сети, окружающей мышечные волокна. Возможен также прирост соединительнотканного компонента мышцы. Показано, что силовые упражнения с большим отягощением вызывают избирательную гипертрофию белых мышечных волокон. Начальный эффект силовых упражнений, вероятнее всего, основан не на структурных, а на функциональных изменениях - преимущественно на двигательном навыке, который сопровождается более активным вовлечением и лучшей синхронизацией двигательных единиц. Гиперплазия - это увеличение числа мышечных волокон за счет их продольного расщепления. Возможность гиперплазии у человека спорна, но она подтверждена у лабораторных животных, подвергавшихся интенсивной силовой тренировке.

Сила напрямую связана со степенью напряжения сокращающейся мышцы . Увеличение мышечной силы возможно только в том случае, если мышца будет испытывать все большие и большие перегрузки, превосходящие уровень ее аэробного метаболизма. Перегрузки создаются либо за счет увеличения сопротивления, либо за счет увеличения сокращений, либо за счет того и другого. В результате такой тренировки, вызывающей гипертрофию и активацию двигательных единиц, достигается повышение напряжения.

Понимание этой темы позволит вам регулярно повышать рабочие веса в абсолютно любом упражнении, избегая так называемого «плато». Если вы грезите большими мышечными объемами, обязательно прочитайте нижеприведенную информацию.

Бытует мнение, согласно которому сила мышцы напрямую зависит от её объёма, то есть чем больше мышечная группа, тем большую силу она может развить. Данное высказывание верно лишь отчасти. Постараемся объяснить почему.

Влияние нервной системы
Прежде всего, необходимо вспомнить базовый курс физиологии. Скелетные мышцы человека обладают удивительным свойством - они могут работать не всей массой, а лишь определенными частями. Грубо говоря, именно этот факт позволяет нам регулировать силу.

Управление сократительной активностью мышц происходит с помощью мотонейронов – особых клеток нервного типа, которые находятся в спинном мозге. Именно отсюда по специальным каналам (аксонам) в каждую мышцу посылается сигнал той или иной мощности. В то же время ветки аксона непосредственно возле мышечной группы разветвляются на огромное количество канальцев, каждый из которых подведен к отдельной мышечной клетке – симпласту.

Чем сильнее сигнал поступает от мотонейронов, тем большее количество мышечных волокон включается в работу. Именно так мы регулируем силу и скорость мышечного сокращения, однако показатель максимальной силы зависит совсем от других факторов.

Тетанус
Для того чтобы продолжить, необходимо ввести термин тетанус – это состояние длительного непрерывного сокращения. Данный процесс наблюдается при подъеме рабочего веса (позитивное движение), при опускании (негативное движение) и при статическом удержании.

Сила тетануса зависит от характера и скорости сокращения мышц. Следует помнить: чем быстрее сокращается мышца, тем меньшую силу она может создать . Следовательно, максимальная скорость сокращения мышечного волокна наблюдается при отсутствии внешней нагрузки. В то же время максимальная сила развивается при негативном движении, например в опускании штанги при жиме лежа.

Влияние типов мышечных волокон Как уже говорилось выше, сокращение мышцы начинается с сигнала ЦНС, который поступает в мотонейрон, а оттуда по аксонам к мышцам. Силу сигнала контролирует человеческий мозг, и чем сильнее воздействие на мотонейрон, тем выше частота импульса поступающего по аксонам.

Для ходьбы, как правило, достаточно 4-5 Гц, однако максимальная частота может превышать 50 Гц. В спинном мозге существуют мотонейроны как быстрого, так и медленного типа. Первые могут создавать высокочастотный импульс, который вызовет гораздо большую силу, нежели частоты медленных мотонейронов. Интересным фактом является то, что все быстрые мотонейроны подключены к быстрым мышечным волокнам (белым), а медленные в свою очередь к одноименным (красным).

Сила мышечной группы так же зависит от самой банальной характеристики – количества активных в данный момент волокон. Люди, у которых количество быстрых (белых) мышечных волокон преобладает, могут похвастаться большей силой, так как за единицу времени могут задействовать большее число мышечных клеток.

Люди с преимущественно красными (медленными) волокнами не выделяются силовыми результатами, зато они сильнее предрасположены к совершению длительной работы с умеренной нагрузкой.

Защитные механизмы
Нельзя не отметить существование целой защитной системы под названием органы Гольджи, которые находятся непосредственно в сухожилиях. Они играют роль «сканеров», которые проверяют каждый сигнал, посланный из ЦНС.

При регистрации слишком сильного напряжения, потенциально опасного для костей и суставов, органы Гольджи оказывают угнетающее и тормозящее действие на все активные мотонейроны. В итоге по аксонам идет заниженный сигнал, что в свою очередь заметно ослабляет ту или иную мышечную группу. К сожалению, зачастую данный процесс начинается задолго до реальной опасности. Организм лишний раз подстраховывается, вследствие чего органы Гольджи работают «с запасом».

Однако не все так плохо, ведь данная характеристика тренируется. Регулярные субмаксимальные нагрузки способствуют повышению порога возбудимости органов Гольджи. Кроме того стоит учесть, что некоторые люди от рождения обладают хорошо развитой сухожильной системой, вследствие чего проявляется так называемая сверхсила.

Влияние мышечного энергообмена
Еще одним важным фактором, влияющим на силу мышечной группы, является режим , в котором выполняетсся то или иное упражнение.

Естественно каждый читатель знает о том, что максимальный рабочий вес, то есть сила, зависит и от количества времени под нагрузкой (количества повторений).

В рамках данной темы достаточно отметить, что исходный уровень АТФ и КрФ заметно влияет на возможный рабочий вес отягощения в любом упражнении. Однако стоит помнить, что у некоторых людей, и в частности спортсменов со стажем, уровень энергетических ресурсов достаточно высок, и прием креатиновых добавок в этом случае не поспособствует заметному увеличению силы. В то же время, новичок с заведомо низким уровнем КрФ и АТФ может получить невероятный скачок в силе, за счет банального употребления креатина.

В случае с 8-12 повторениями, ключевую роль играет не количество фосфатов, а каскад других характеристик, таких как: способность сопротивляться лактату (молочной кислоте), количество гликогена мышц, частота мотонейронных сигналов и других. Также стоит отметить, важность активности фермента АТФазы , который расщепляет АТФ и дарит нам энергию.

Данная характеристика всецело зависит от кислотности среды. Так, в нейтральной среде (pH=7) данный фермент показывает отличную работоспособность, но как только в мышечной группе начнут появляться кислые продукты метаболизма, активность АТФазы начнет спадать к нулю. Если в диапазоне повторений 1-6 лактата нет, то при 8-12 рабочих движениях, молочная кислота непременно понизит ваши силовые характеристики.

Практические выводы
Резюмируем всё вышесказанное. Итак, сила мышц зависит от следующих факторов:

  • Силы и частоты сигналов ЦНС и мотонейронов соответственно;
  • Количества мышечных волокон, в частности быстрого (белого) типа;
  • Высокого порога возбудимости органов Гольджи, то есть от крепости связок и суставов;
  • Количества гликогена, АТФ, КрФ или способности противостоять лактату, при том или ином количестве повторений.

Теперь, зная какие факторы влияют на силу мышц, вы можете развивать каждую отдельную характеристику, будь то нервная система или количество КрФ.

Выбор тренировочной цели зависит от того, какую силу вы развиваете: на 1-6 повторений или на 8-12. Необходимо помнить, что у любой характеристики есть свой предел развития. Если вы столкнулись с застоем, попробуйте сменить тренировочную цель. Как правило, достаточно поменять количество повторений.

Стоит отметить, что любая тренировка и развитие силы в целом, увеличивает количество мышечных волокон и объем мускулатуры. Именно поэтому все представители силовых видов спорта обладают хорошим телосложением.

  • Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

    1) обеспечивают определенную позу тела человека;

    2) перемещают тело в пространстве;

    3) перемещают отдельные части тела относительно друг друга;

    4) являются источником тепла, выполняя терморегуляционную функцию.

  • Свойства скелетной мышцы :

    1) Возбудимость - способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты - вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

    2) Низкая проводимость (10-13 м/с) - способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

    3) Сократимость - способность укорачиваться или развивать напряжение при возбуждении;

    4) Эластичность - способность развивать напряжение при растягивании.

    5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

    6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

  • Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

  • Сила мышц . Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила ); при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

    Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

    Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

    Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

    Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

    Величина сокращения снижается также при утомлении мышцы.

    Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой . Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

    Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

    В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

    Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

    Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

    Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

  • Работа мышц . Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

    Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

    Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

    Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

      (10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

      Виды сокращений .

      У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

      Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы.

      Фазы одиночного мышечного сокращения :

      Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

      Период укорочения, или развития напряжения.

      Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

      При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением , или тетанусом.

      Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

      Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

      При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

      Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический.

      Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

      При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

      Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы - тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

      Пессимум - угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза . Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки - 0,02-0,03 сек). Это время определяет функциональные возможности нервных окончаний - их лабильность . Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение - парабиоз , блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.