Силуянов в вконтакте. Профессор Селуянов: открытия в бодибилдинге. Изотонические упражнения на каждый день для широкого возрастного диапазона

Селуянов Виктор Николаевич

Селуянов Виктор Николаевич- доктор биологических наук, профессор кафедры физической культуры и спорта, специалист в области биомеханики, антропологии, физиологии, теории спорта и оздоровительной физической культуры, спортивной адаптологии, автор ряда научных изобретений и инновационных технологий, создатель оздоровительной системы изотон .

Изотон

Изотон , это оздоровительная система, которая была создана профессором Селуяновым В.Н., в середине 90-х годов прошлого столетия.

Само название- изотон происходит от греческого- isos tonos, что значит тонус, напряжение, а если говорить об изотонических упражнениях, то можно перевести слово изотонический как равное напряжение мышцы во время движения. как это происходит при простом подъеме руки. Уже становится понятным, что упражнения надо делать с одинаковым напряжением мышц.

Цель системы

Цель очень простая-сделать человека , улучшить его самочувствие и работоспособность, изменить состав тела, то есть привести в норму соотношение жировой и мышечной ткани, повысить активность мужчин и женщин широкого возрастного диапазона, повысить иммунитет, нормализовать работу внутренних органов.

Эта система разрабатывалась на научной основе, то есть сначала ученые изучили как силовые упражнения влияют на организм человека, потом глубокому анализу подверглись все западные методики занятий, это бодибилдинг, аэробика, спортивные игры. Изучены были и восточные оздоровительные системы, это йога, цигун, что-то было взято и из нашей То есть исследованию подверглись все наиболее популярные системы с точки зрения оздоровления организма.

Потом с помощью компьютерного моделирования было изучено как и какая нагрузка благоприятно влияет на наш организм, как физиологические системы организма реагируют на нагрузку, какие биохимические процессы происходят в организме при занятиях бодибилдингом, аэробикой. калланетикой и другими видами занятий.

После проведенных исследований, и знакомства с научными публикациями убедило ученых в том, что существенного теоретического обоснования ни одна из перечисленных систем не имеет. Кроме этого, были обнаружены публикации, в которых экспериментально доказана очень низкая эффективность наиболее популярных систем оздоровления, таких, как разные виды аэробики.

Как итог, была создана или разработана оздоровительная система изотон , которая базируется на концепции, согласно которой в основе биологического благополучия человека (как решающего условия) лежит, прежде всего нормальное состояние эндокринной и иммунной систем, а также других физиологических систем организма (сердечно-сосудистой, мышечной и т. д.), играющих, однако, подчиненную роль в решении проблемы здоровья.

Основные принципы оздоровительной системы изотон

Понятие «ИЗОТОН» имеет в своем происхождении две идеи:

Первая — основным средством физического воспитания основной массы практически здоровых людей, обладающим наивысшей оздоровительной эффективностью, являются силовые стато- динамические, или изотонические упражнения.

Вторая — регулярное использование стато- динамических упражнений в жизни человека создает условия для повышения адаптационных резервов, создает повышенный и постоянный жизненный тонус.

Реализация идей ИЗОТОНА достигается при соблюдении следующих принципов:

Принцип минимизации роста систолического артериального давления Понятно, что для лиц с признаками противопоказано выполнять упражнения, вызывающие рост артериального давления более 150 мм рт.ст. Поэтому при построении тренировочного занятия необходимо соблюдать следующие требования.

Разминка. Перед основной частью занятий, перед силовыми упражнениями, необходимо добиться расширения артерий и артериол с помощью разминки. В этом случае снижается периферическое сопротивление, облегчается работа левого желудочка сердца.

Упражняться в положении лежа . В положении стоя сердце должно нагнетать давление крови в артериях и артериолах до такой степени, чтобы преодолеть вес крови, находящейся в венозной системе, поднять кровь на уровень сердца. Поэтому надо отдавать предпочтение упражнениям, выполняющимся в положении лежа.

Задействовать в силовом упражнении минимальное количество мышц . При вьполнении динамических упражнений напрягающиеся и расслабляющиеся мышцы облегчают работу сердца. При выполнении силовых упражнений, когда темп медленный, роль мышечного насоса сводится к минимуму, а при активности большой массы мышц, при окклюзии сосудов, работа сердца затрудняется. Поэтому в силовых упражнениях следует задействовать минимальное количество мышц, особенно в том случае, если они работают в стато-динамическом режиме.

Чередовать упражнения для относительно больших по массе мышц с тренировкой мышц с малой массой. При построении комплекса упражнений часто приходится активировать большую массу мышц, что создает условия для роста артериального давления. Поэтому выполнение следующего упражнения для мышц с малой массой снимаются возможные проблемы с ростом артериального давления.

После каждого силового упражнении или серии выполнять стретчннг. Стретчннг не предъявляет к сердечно-сосудистой системе особых сложностей, поэтому имеется 10- 40 с для снижения активности ее деятельности. Одновременно с этим растяжение мышц стимулирует синтез белка в мышцах.

Как надо выполнять упражнения

Упражнения надо выполнять с постоянным напряжением мышц, без фазы расслабления, «до отказа» или до чувства жжения в мышцах. Это сигнал к тому, что надо прекратить упражнение и отдохнуть. Амплитуда движения небольшая. Выполнение упражнения длится 30-60 секунд, отдых между упражнениями примерно 30 секунд. Тут каждый подходит индивидуально, в зависимости от своего состояния. Упражнения выполняются в умеренном темпе и без задержки дыхания.

Например. делаем приседания- 10-20 раз, отдых 30 секунд, потом повторяем снова 10-20 раз. опять отдых 30 секунд, повторяем третий раз то же самое. Это у нас получился один круг. Потом отдых на эту группу мышц 5-10 минут. В это время можно проработать например пресс, спину или бицепс по той же схеме. За одно занятие можно делать 3-4 круга, если вы хорошо готовы. то 5-8 кругов.

За одно занятие прорабатывайте 2-3 группы мышц не более. Все мы разные, поэтому для каждого человека должен быть свой индивидуальный подход. Существуют основные принципы. и этим принципам надо следовать.

Еще один важный момент-Упражнения надо выполнять так. чтобы не было сильного закисления мышц. Молочная кислота или ионы водорода при сильном закислении просто разрушают клетку. Поэтому важен отдых между упражнениями, чтобы молочная кислота исчезала, и начался синтез новых клеток.

Изотон состоит преимущественно из силовых упражнений, потому, что самый сильный выброс гормонов в кровь происходит при силовых упражнениях при достижении физиологического стресса. Причем лучше всего это происходит, когда выполняешь упражнения в статодинамическом режиме.

Изотонические упражнения на каждый день для широкого возрастного диапазона

Что происходит в организме при выполнении изотонических упражнений

А происходит вот что. При напряжении мышц наш организм испытывает кратковременный стресс, а к стрессам относится все, что неприятно нашему организму, в данном случае это напряжение мышц.

В коре головного мозга возникает психическое напряжение, которое возбуждает гипофиз, а гипофиз это железа эндокринной системы, которая находится в головном мозге под основной коркой.

Начинают активизироваться и другие железы эндокринной системы. Железы эндокринной системы начинают выделять соматотропный гормон или гормон роста, этот гормон способствует процессам синтеза в организме и активизирует белковый. липидный, углеводный и минеральный обмены. Гормон строит мышцы. кости, связки, сухожилия организма.

Выделяется такой важный для мужчин гормон, как-. У женщин- эстроген. Основная роль заключается в выполнении двух важных функций:

  • Стимуляция роста мышечной массы, сжигание жира и поддержание оптимальной плотности костных тканей. Являясь по своей химической структуре анаболическим стероидом, он активизирует образование и обновление клеток и мышечных структур
  • .Формирование у мужчины вторичных половых признаков, обеспечение полноценной деятельности органов половой системы.

Эстрогены у женщин, это стероидные гормоны, которые влияют на рост и развитие половых органов, подготавливая женщину к материнству. Если женский организм в достаточном количестве содержит эстроген. то первое. что бросается в глаза это красивая фигура с тонкой талией и красивыми бедрами, бархатистая кожа.

Вот два важных для нас гормона-это гормон роста и которые начинает выделять эндокринная система при занятии изотоном. Гормоны попадают в клетку, и как написано выше.начинается строение новых клеток и мышечных структур, сжигаются жировые отложения. Организм обновляется. Именно эндокринная система отвечает за оздоровление организма и играет важную роль в здоровье человека.

  • Надо отметить, что гормоны заходят не в пассивную ткань, а в активную, та которая прорабатывается,
  • Гормоны появляются только при наличии психического напряжения или стресса
  • Если заниматься со штангой, то вес должен быть 30-60% от максимального веса который вы сможете поднять.
  • Упражнения надо выполнять без задержки дыхания.
  • Между упражнениями должен быть отдых 5-10 минут, чтобы мышцы восстановились и из мышц ушла молочная кислота.
  • С помощью выделяемых гормонов можно сделать сосуды чистыми.
  • Обязательно перед занятием делать разминку 5-10 минут и стретчинг

Теория атеросклероза или как сделать сосуды чистыми

С помощью бега трусцой не избавишься от, так как нет условий для выделения гормонов, нет стресса или психического напряжения. Бег трусцой, это легкий, комфортный бег, без напряжения мышц.

Правильное питание и регулярное выделение гормонов, способствует избавиться от Гормон проникает в бляшку, держится там около недели, в итоге холестерин обратно превратится в жир, жир выйдет в кровь и уйдет.Прощай

Выполнение физических упражнений приводит к активизации различных тканей, усилению в них процессов анаболизма и катаболизма. В зависимости от режима питания можно направить ход адаптационных процессов в желаемое русло, например, увеличить массу мышц (прием выше нормы полноценного белка), (прием ниже нормы углеводов и жиров).

Почему не льзя задерживать дыхание во время упражнений

Когда человек при выполнении упражнений, особенно неподготовленный или в возрасте, начинает задерживать дыхание он по сути лишает сердце кровотока, сердце бьется. а кровь не поступает должным образом.

Выполнив, упражнение человек встает и начинает интенсивно дышать, сердце бешено бьется, давление возрастает, мощный кровоток бьет по сосудам, и если там есть то этот кровоток ее срывает и где-то что-то закупоривается и получается микраинсульт. Поэтому задержка дыхания недопустима.

Изотонические упражнения

Изотон предназначен для всех категорий людей, которые хотят убежать от инсульта или инфаркта, Почувствовать себялюдьми. Предлагаются обычные физические упражнения, о которых люди с возрастом обычно забывают и уповают на чудо — таблетку.

Как говорит Селуянов, изотон расчитан на мужчин шестидесяти лет, которые готовы завтра умереть.

Тем не менее, изотон, это оздоровительная система, имеющая доказательную базу Селуянов доступно рассказывает какие изменения происходят в организме при регулярных занятиях изотоном.

Изотон- это, которые можно делать где угодно, было бы ваше желание.

Как пример, посмотрите несколько упражнений оздоровительной системы изотон. Упражнения можно подобрать для каждого человека. независимо от его физического состояния.

Для одних подойдут более легкие упражнения, упражнения можно делать лежа или сидя. Это для людей старше пятидесяти лет, у которых мышцы уже атрофировались.

Другим упражнения посложнее, это для тех кто помоложе и не все еще растерял. Количество повторов выполнения упражнения также индивидуально. Но двигательная активность необходима всем, это истина.

Комплекс статодинамических упражнений

Статодинамические упражнения для красивой осанки

Статодинамическая тренировка

Селуянов ВикторНиколаевич. Биография

Виктор Николаевич Селуянов- родился в 1946 году.

В 1970 году закончил Государственный ордена Ленина институт физической культуры

1979 год- кандидат биологических наук. Старший научный сотрудник

1992 год-защитил докторскую диссертацию

1995 год- получил патент «Способ изменения пропорции состава тканей всего тела человека и в отдельных его сегментах», разработал математические модели, имитирующие срочные и долговременные адаптационные процессы в организме спортсменов.

В последне время время -заведующий научно-учебной лабораторией МФТИ 〈 Информационные технологии в спорте 〉, Заместитель заведующего кафедрой по научной работе.

Профессиональные интересы- спортивная антропология, физиология, теория спортивной тренировки и оздоровительной физической культуры.

Селуянов Виктор Николаевич


Селуянов Виктор Николаевич

Селуянов опубликовал более 100 научных работ, в том числе: монографию « Биомеханика двигательного аппарата спортсменов» (1981 год, соавтор), «Физическая подготовка в спортивных играх» (1991 год, соавтор), «Изотон, основы теории оздоровительной тренировки» (.1995 год, соавтор) и другие.

В 1981 году- лауреат премии Спорткомитета СССР за лучшую научно-исследовательскую работу в области визической культуры и спорта.

По системе Силуянова занимались и продолжают заниматься многие известные спортсмены- дзюдоисты: чемпионы мира 2001 года Макаров, Михайлин, бронзовый призер олимпийских игр 2004 года Д. Носов, заслуженные мастера спорта по самбо Д. Максимов, Мартынов, Р. Сазонов.

Олимпиада 2004 год, Афины. Дмитрий Носов

Чемпионат мира по дзюдо — 2001 год, Мюнхен, Макаров Виталий-Zamora David

Полная лекция профессора Селуянова В. Н.

Сегодняшней публикацией мы открываем цикл бесед с профессором Виктором Николаевичем Селуяновым посвященный современным биологически обоснованным научным методам тренировок. Сразу скажу, что многие поклонники «железной игры» воспримут ряд положений в штыки. Слишком разительно отличаются научные методы от общепринятых в силовом мире положений, считающихся незыблемыми. С поразительной легкостью Виктор Николаевич разбивает устоявшиеся стереотипы, но делает это с убийственной логикой, основанной на глубоких знаниях анатомии, физиологии и биохимии. Поэтому не спешите бросать чтение, и возвращаться к трудам практиков. Поверьте, наука, особенно, если она использует для вывода положений умозрительные и математические модели, смотрит в «корень», объясняет причины явлений. Вот только связь передовой науки и практики пока оставляет желать лучшего. Переиздаются давно морально устаревшие учебники теории и методики физической культуры и спорта. Труды Матвеева, Зациорского, Верхошанского, грешат эмпирическим подходом, поэтому содержат формально-логические рекомендации без биологического обоснования. И это не вина авторов, на момент написания ими своих трудов не было такого объема биологической информации, методов исследования, технического оборудования, как сейчас, и им приходилось додумывать, выдвигать гипотезы, которые потом перешли в разряд устоявшихся положений, хотя изначально они не были обоснованы теоретически. И эти некорректные обобщения переписываются из учебника в учебник на протяжении более полувека, а современные научные биологические исследования так и остаются в узкоспециализированных научных изданиях и не выходят не только на массового читателя, но даже на издателей книг по спортивным темам. И пропасть между теорией – биологическими науками, и практикой продолжает увеличиваться. Сегодня мы начнем с азов. Мы не будем детально изучать строение, биологию и биохимию клетки, но ряд основных положений нам надо разобрать, чтобы понимать, какие процессы происходят в мышцах под воздействием различных тренировок. Надо построить модели систем и органов человека и на этой основе описывать и предсказывать адаптационные процессы. Итак, начнем…

Виктор Николаевич, хотелось бы начать разговор с основных понятий, необходимых нам для понимания биологических процессов в мышце.

Начнем с клетки. Мышечная клетка, или как ее еще называют, мышечное волокно представляет собой большую клетку имеющую форму удлиненного цилиндра и по длине чаще всего соответствующей длине целой мышцы и диаметром от 12 до 100 мкм. Группы мышечных волокон образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани, переходящей на концах мышцы в сухожилия, крепящиеся к кости.
Сократительным аппаратом мышечного волокна являются специальные органеллы - миофибриллы , которые у всех живот­ных имеют примерно равное поперечное сечение, колеблющееся от 0,5 до 2 мкм. Число миофибрилл в волокне достигает двух тысяч. Состоят миофибриллы из последовательно соединенных саркомеров, каждый из которых включает нити (миофиламенты) актина и миозина. Миозин крепится к ЗЕТ пластинкам титином. При растяжении мышцы титин растягивается и может порваться, что приводит к разрушению миофибриллы, усилению катаболизма. Между филаментами актина и миозина могут образовываться мостики и при затрате энергии, заключенной в АТФ, может происходить поворот мостиков, т.е. сокращение миофибриллы, сокраще­ние мышечного волокна, сокращение мышцы и разрыв его. Основная энергия молекул АТФ тратится именно на разрыв мостиков. Мостики образуются в присутствии в саркоплазме ионов кальция. Увеличение количества миофибрилл (гиперплазия) в мышечном волокне приводит к увеличению поперечного сечения (гипертрофии), а, следовательно, силы и скорости сокращения при преодолении существенной внешней нагрузки. Удельная сила, приходящаяся на поперечное сечение мышечных волокон у всех людей примерно одинаковая, будь - то старушка или суперпаурлифтер.
Кроме миофибрилл огромное значение для нас имеют такие органеллы как митохондрии , энергетические станции клетки, в которых с помощью кислорода идет превращение жиров или глюкозы в углекислый газ (СО2), воду и энергию, заключен­ную в молекулах АТФ. Для увеличения мышечной массы и силы нам необходимо увеличивать количество миофибрилл в мышечных волокнах, а для увеличения выносливости – количество в них митохондрий.

Расскажите об энергетике мышечных волокон.

Обычно описываются энергетические процессы в организме, т.е. весь организм представляется в виде пробирки, в которой разворачиваются биохимические процессы. Поэтому, логически корректно - в соответствии с принятой моделью, рождаются представления о МПК, АнП одинаковые для всех видов упражнений, а причиной появления АнП недостаток кислорода в крови. Однако, совершенно ясно, что биохимические процессы в организме идти не могут, они могут идти в определенных клетках. Поэтому интерпретация физиологических явлений с применением простейшей модели ведет к ошибочным представлениям. Увеличение сложности модели расширяет круг явлений, доступных к корректной интерпретации.
Биоэнергетические процессы проходят в клетках. В клетке энергия используется только в виде аденозинтрифосфорной кислоты (АТФ). Освобождение энергии заключенной в АТФ, осуществляется благодаря ферменту АТФ-аза, которая имеется во всех местах, где требуется энергия. Именно по активности этого фермента в головках миозина мышечные волокна разделяют на быстрые и медленные. Активность миозиновой АТФ-азы предопределена ДНК, а информация о строительстве быстрой или медленной изоформы АТФ-азы зависит от частоты приходящих к МВ импульсов от мотонейронов спинного мозга. От размера мотонейрона зависит максимальная частота импульсации, поскольку размер мотонейрона поменять невозможно, то мышечная композиция наследуется и практически не меняется под действием тренировочного процесса. С помощью электростимуляции можно временно изменить мышечную композицию.
Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.
Доказательством использования АТФ для расцепления актин-миозиновых мостиков являются эксперименты с определением энергозатрат при подъеме по лестнице и спуске. При подъеме вверх КПД составляет 20–23%, а при спуске метаболические затраты практически исчезают, остаются затраты только на уровне покоя – основного обмена. Поэтому, при той же механической мощности, КПД на спуске превышает 100%. Это означает, что при выполнении эксцентрических упражнений (растяжение мышц разгибателей коленного сустава) механическая энергия тратится на разрыв актин-миозиновых мостиков, а химическая энергия молекул АТФ не тратится. Причем правильно тренированная мышца после таких упражнений не болит, следовательно, разрушений в мышечных волокнах не происходит.
Количество АТФ в миофибриллах хватает на одну–две секунды высокоинтенсивной работы. Под воздействием миозиновой АТФ-азы АТФ распадается на АДФ, фосфор, высвобождая большое количество энергии и ион водорода. Но с первой же секунды работы в мышце разворачивается процесс ресинтеза миофибриллярных АТФ за счет КрФ. Креатинфосфат распадается на головке миозина, поскольку там же имеется фермент креатифосфокиназа. Образуется свободный креатин, фосфор и энергия, достаточная для соединения АДФ, фосфора, иона водорода. Молекулы АТФ крупные, поэтому они не могут перемещаться по клетке. Перемещаются по клетке КрФ, Кр, Ф. Это явление назвали креатинфосфатным шунтом. Ресинтез КрФ может выполняться только с помощью молекул АТФ. Митохондриальные молекулы АТФ ресинтезируют КрФ, а АДФ, Ф и ион водорода проникают обратно в митохондрию. Молекулы АТФ, ресинтезируемые в ходе гликолиза, могут также использоваться для ресинтеза КрФ.

Что такое мышечная композиция?

Классифицировать мышечные волокна можно минимум двумя способами. Первый способ - по скорости сокращения мышцы. В этом случае все волокна делятся на быстрые и медленные. Это метод определяет наследственно обусловленную мышечную композицию. Надо заметить, что обычно мышечную композицию определяют с помощью взятия из латеральной головки мышцы бедра биопробы. Но данные полученные для данной мышцы не коррелируют с биопробами других мышц. Например, бегуны на средние и длинные дистанции имеют большую долю ММВ (медленных мышечных волокон) в латеральной головке мышцы бедра, в мышцах задней поверхности бедра и икроножной мышце больше БМВ. У стайера все мышцы ног имеют преимущественно ММВ.
Существует и второй способ классификации. Если в первом случае оценка идет по ферменту миофибрилл (миозиновая АТФ-аза), то во втором - по ферментам аэробных процессов, по ферментам митохондрий. В этом случае мышечные волокна делят на окислительные и гликолитические. Те мышечные волокна, в которых преобладают митохондрии, называют окислительными. В них молочная кислота практически не образуется.
В гликолитических волокнах, наоборот, очень мало митохондрий, поэтому в них образуется много лактата. Для образования молочной кислоты нужны ионы водорода, а они образуются при распаде АТФ. Поэтому в гликолитических мышечных волокнах накапливается молочная кислота и диффундирует в соседние ОМВ или в кровь. Сейчас найдены в мембранах МВ транспортеры молочной кислоты, однако, практическая роль их пока не получила оценки. В крови молочная кислота диссоциирует на лактат и ион водорода. Поэтому между концентрацией лактата и ионами водорода в крови имеется прямая пропорциональная связь при выполнении физических упражнений. Уход из ГМВ ионов водорода мешает процессу полного ресинтеза АТФ, поэтому гликолитическое мышечное волокно теряет способность к образованияю актин-миозиновых мостиков, а ионы водорода также препятствуют ионам кальция присоединяться к миофиламентам - актину. Чем больше ионов водорода, тем больше закисление, тем раньше наступает локальное утомление. Для полного восстановления запасов АТФ, после выполнения упражнения, необходимо добавить в мышечное волокно ионов водорода. Единственный путь появления в МВ ионов водорода - митохондрии. В митохондриях в цикле лимонной кислоты образуются промежуточные метаболиты – цитрат, сукцинат, фумарат, малат, а также ионы водорода. Частично эти продукты выходят из митохондрий и участвуют в процессах регуляции метаболизма в клетке. Так цитрат является ингибитором гликолиза. Поскольку в ГМВ мало митохондрий, то процесс восстановления запасов АТФ затягивается. После восстановления запасов АТФ и КрФ активность митохондрий минимизируется, поэтому закисление клетки прекращается. Очевидно, что в ОМВ, где много митохондрий, восстановление запасов АТФ и КрФ происходит очень быстро, а избыток ионов водорода превращается в воду.
Так вот в этих классификациях и начинается путаница. Почему-то большинство читателей понимают так, что быстрые волокна всегда гликолитические, а медленные – окислительные и ставит знак равенства в этих классификациях, а это далеко не так. При правильно построенном тренировочном процессе быстрые волокна можно сделать окислительными, значительно увеличив в них количество митохондрий, и они не будут утомляться, то есть перестанут образовывать молочную кислоту. Почему это происходит? Потому что промежуточные продукты, например, пируват, не превращается в лактат, а поступает в митохондрии, где окисляется до воды и углекислого газа. Такие спортсмены показывают выдающиеся результаты, в видах спорта, требующих выносливости, если нет других лимитирующих факторов. Например, выдающиеся велосипедисты профессионалы – Меркс, Индурайн, Армстронг, при выполнении ступенчатого теста до МПК закисляются только до 6мМ/л лактата в крови. У обычных гонщиков концентрация лактата достигает 12–20мМ/л.
И наоборот, медленные волокна тоже могут быть гликолитическими, хотя этот вариант в литературе не описывается. Но мы знаем, что если человек лежит в больнице предоперационный период, а потом ещё и послеоперационный период, то потом уже и встать не может, ходить не может. Первая причина - координация нарушается, а вторая причина - мышцы «уходят». И самое главное, уходят, прежде всего, митохондрии из медленных мышечных волокон (период их "полураспада" всего 20–24 дня). Если человек пролежал 50 дней, то от митохондрий почти ничего не останется, МВ превратятся в медленные гликолитические, поскольку медленные или быстрые наследуется, а митохондрии стареют, а создаются только когда начинают активно функционируют. Поэтому сначала даже медленная ходьба вызывает закисление крови, что и доказывает наличие в мышцах только ГМВ, а вовсе не отсутствие кислорода в крови.

Расскажите подробнее о молочной кислоте. Из чего она состоит и какую пользу и вред может принести накопление ее составляющих в мышцах .

Молочная кислота состоит из аниона лактат и катиона – положительно заряженного иона водорода. Лактат крупная молекула, поэтому не может участвовать в химических реакциях без участия ферментов, поэтому не может повредить клетке.. Ион водорода самый маленький атом, заряженный, поэтому проникает в сложные структуры и приводит к существенным химическим разрушениям. При очень большой концентрации ионов водорода разрушение могут привести к катаболизму с помощью еще и ферментов лизосом. Лактат с помощью лактатдегидрогеназы сердечного типа может преобразоваться обратно в пируват, а тот, с помощью фермента - пируватдегидрогеназы, превращается в ацетилкоэнзим-А, который поступет в митохондрию и становится субстратом окисления. Следовательно, лактат является углеводородом, источником энергии для митохондрий ОМВ, а ион водорода вызывает существенные разрушения в клетке, усиливая катаболизм.

Как на практике определить мышечную композицию?

Международный стандарт - берут кусочек мышечной ткани (как правило, из мышц бедра - наружной головки) и биохимическими методами определяют, сколько быстрых и сколько медленных волокон. Часть той же самой порции подвергают еще одному анализу, при котором определяют количество ферментов митохондрий.
В нашей лаборатории, еще под руководством Ю. В. Верхошанского, были разработаны опосредованные, косвенные, методы. Тестирование выполнялось на универсальном динамографическом стенде (УДС). Мы на нем определяли скорость нарастания силы, и оказалось, что она связана с количеством быстрых и медленных волокон. Потом такие же исследования выполнил Коми в Финляндии. Он нашел корреляционную зависимость между мышечной композицией (быстрые и медленные МВ) и крутизной нарастания силы. Но мы пошли дальше и разделили градиент силы на саму силу, то есть получили относительный показатель, который хорошо работает. Мало того, может быть, это более точный метод, чем биопсия, поскольку мы прямо измеряем скорость напряжения мышцы.
Мы, например, разделяем бегунов стайеров и бегунов на средние дистанции по этому показателю. У стайеров медленными мышцами являются как передние, так и мышцы задней поверхности бедра, а у бегунов на 800 м - мышцы передней поверхности бедра такие же медленные, а задние - быстрые, как у хороших спринтеров. Поэтому они быстро бегут 100 м с ходу, и именно эти мышечные волокна берегут до самого финиша. За 100–150 м до финиша они изменяют технику бега, сами спортсмены говорят, что они «переключают скорость» как в автомобиле.

Значит, если мы берем биопсию из четырехглавой мышцы бедра, то мы можем порой ошибаться? Соотношение волокон в разных мышцах неодинаково?

Совершенно верно. В последнее время накопилось много материалов, которые свидетельствуют, что если одна мышца медленная, скажем, прямая мышца бедра, то не обязательно, что и все остальные такие же. Интересно, что у спринтеров передняя поверхность бедра не быстрая и не медленная, а вот задней поверхности – быстрая и, тем более, икроножная и камбаловидная, иначе быть не может, но биопсию все равно берут из боковой поверхности бедра и результаты, например, для спринта получаются некорректные - неинформативные.

А по вашему методу?

По нашему методу все нормально. Для измерения силы и градиента силы нет ограничений, невозможно нанести вред мышцам, как это бывает при взятии биопсии. Для реализации нашего метода сейчас имеется в наличии изокинетический динамометр (БИОДЕКС). Измерения показали, что у спринтеров и передняя довольно быстрая и очень сильная, а задняя тем более. Если же взять прыгунов, то у них до 90% быстрых волокон в передней поверхности бедра - это главная для них мышца. Но в беге все-таки более важна задняя поверхность, она и рвется поэтому. Например, при обследовании сборной команды горнолыжников мы нашли только двух одаренных спортсменов (очень сильных и быстрых), которые и сейчас продолжают успешно выступать в Российских соревнованиях, а вот среди женщин не было ни одной, поэтому и нет успехов на международной арене. Никакие иностранные тренеры не помогут таким спортсменкам.

Вы можете привести усредненные данные по соотношению быстрых и медленных волокон в основных мышечных группах?

Хорошо известно, что в среднем у человека мышцы ног имеют больше медленных МВ (I тип 50%, II тип 50%), а в мышцах рук меньше медленных (I тип 30%, II тип 70%). При этом имеется индивидуальное разнообразие, которое лежит в основе профессионального отбора в спорте.

Насколько резко выражен переход от быстрых волокон к медленным в отдельно взятой мышце?

Мышечная композиция определяется по данным биопсии, по строго определенным методикам биохимической обработки пробы мышечной ткани. В рамках установленного метода определяют 2 типа МВ и еще 2–4 подтипа. Однако, при изменении методики обработки биопробы можно получить существенно большее количество типов МВ. Для практики спорта отработанная методика классификации МВ остается пока удовлетворительной.

Расскажите о методах гиперплазии миофибрилл в мышечных волокнах

Цель силовой подготовки - увеличить число миофибрилл в мышечных волокнах. Достигается это с помощью хорошо известной силовой тренировки, которая должна включать упражнения с 70–100% интенсивностью, каждый подход продолжается до отказа. Это хорошо известно, однако смысл такой тренировки, процессы, разворачивающиеся в мышцах в ходе выполнения упражнений и при восстановлении, раскрыты еще недостаточно полно.
Силовое воздействие человека на окружающую среду - есть следствие функционирования мышц. Мышца состоит из мышечных волокон - клеток. Для увеличения силы тяги МВ необходимо добиться гиперплазии (увеличения) миофибрилл. Этот процесс возникает при ускорении синтеза и при прежних темпах распада белка. Исследования последних лет позволили выявить четыре основных фактора, определяющих ускоренный синтез белка в клетке:

1) Запас аминокислот в клетке.
2) Повышенная концентрация анаболических гормонов в крови.
3) Повышенная концентрация "свободного" креатина в МВ.
4) Повышенная концентрация ионов водорода.

Второй, третий и четвертый факторы прямо связаны с содержанием тренировочных упражнений.
Механизм синтеза органелл в клетке, в частности миофибрилл, можно описать следующим образом.
В ходе выполнения упражнения энергия АТФ тратится на образование актин-миозиновых соединений, выполнение механической работы. Ресинтез АТФ идет благодаря запасам КрФ. Появление свободного Кр активизирует деятельность всех метаболических путей, связанных с образованием АТФ (гликолиз в цитоплазме, аэробное окисление в митохондриях, которые могут находиться рядом с миофибриллами, или в ядрышке, или на мембранах СПР). В БМВ преобладает М-ЛДГ, поэтому пируват, образующийся в ходе анаэробного гликолиза, в основном трансформируется в лактат. В ходе такого процесса в клетке накапливаются ионы Н. Мощность гликолиза меньше мощности затрат АТФ, поэтому в клетке начинают накапливаться Кр, Н, La, АДФ, Ф.
Наряду с важной ролью в определении сократительных свойств в регуляции энергетического метаболизма, накопление свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах. Показано, что между содержанием сократительных белков и содержанием креатина имеется строгое соответствие. Свободный креатин, видимо, влияет на синтез и-РНК, т.е. на транскрипцию в ядрышках МВ. В лаборатории биохимии ПНИЛ ГЦОЛИФК было показано, что применение препаратов креатина при подготовке спринтеров позволил в течение года достоверно улучшить спортивные результаты в спринте, прыжках, однако показатели аэробных возможностей стали хуже.
Предполагается, что повышение концентрации ионов водорода вызывает лабилизацию мембран (увеличение размеров пор в мембранах, это ведет к облегчению проникновения гормонов в клетку), активизирует действие ферментов, облегчает доступ гормонов к наследственной информации, к молекулам ДНК. В ответ на одновременное повышение концентрации Кр и Н интенсивнее образуются РНК. Срок жизни и-РНК короток, несколько секунд в ходе выполнения силового упражнения плюс пять минут в паузе отдыха. Затем молекулы и-РНК разрушаются.
Теоретический анализ показывает, что при выполнении силового упражнения до отказа, например 10 приседаний со штангой, с темпом одно приседание за 3–5 с, упражнение длится до 50 с. В мышцах в это время идет циклический процесс: опускание и подъем со штангой 1–2 с выполняется за счет запасов АТФ; за 2–3 с паузы, когда мышцы становятся мало активными (нагрузка распространяется вдоль позвоночного столба и костей ног), идет ресинтез АТФ из запасов КрФ, а КрФ ресинтезируется за счет аэробных процессов в ММВ и анаэробного гликолиза в БМВ. В связи с тем, что мощность аэробных и гликолитических процессов значительно ниже скорости расхода АТФ, запасы КрФ постепенно исчерпываются, продолжение упражнения заданной мощности становится невозможным - наступает отказ. Одновременно с развертыванием анаэробного гликолиза в мышце накапливается молочная кислота и ионы водорода (в справедливости высказываний можно убедиться по данным исследований на установках ЯМР). Ионы водорода по мере накопления разрушают связи в четвертичных и третичных структурах белковых молекул, это приводит к изменению активности ферментов, лабирализации мембран, облегчению доступа гормонов к ДНК. Очевидно, что чрезмерное накопление или увеличение длительности действия кислоты даже не очень большой концентрации может привести к серьезным разрушениям, после которых разрушенные части клетки должны будут элиминироваться. Заметим, что повышение концентрации ионов водорода в саркоплазме стимулирует развитие реакции перекисного окисления. Свободные радикалы способны вызвать фрагментацию митохондриальных ферментов, протекающую наиболее интенсивно при низких, характерных для лизосом, значениях рН. Лизосомы участвуют в генерации свободных радикалов, в катаболических реакциях. В частности, в исследовании А.Salminen e.a. (1984) на крысах было показано, что интенсивный (гликолитический) бег вызывает некротические изменения и 4–5 кратное увеличение активности лизосомальных ферментов. Совместное действие ионов водорода и свободного Кр приводит к активизации синтеза РНК. Известно, что Кр присутствует в мышечном волокне в ходе упражнения и в течение 30–60 с после него, пока идет ресинтез КрФ. Поэтому можно считать, что за один подход к снаряду спортсмен набирает около одной минуты чистого времени, когда в его мышцах происходит образование и-РНК. При повторении подходов количество накопленной и-РНК будет расти, но одновременно с повышением концентрации ионов Н, поэтому возникает противоречие, т.е. можно разрушить больше, чем потом будет синтезировано. Избежать этого можно при проведении подходов с большими интервалами отдыха или при тренировках несколько раз в день с небольшим числом подходов в каждой тренировке, как это имеет место в тренировке И. Абаджиева и А. Бондарчука.
Вопрос об интервале отдыха между днями силовой тренировки связан со скоростью реализации и-РНК в органеллы клетки, в частности в миофибриллы. Известно, что сама и-РНК распадается в первые десятки минут после упражнения, однако структуры, образованные на их основе, синтезируются в органеллы в течение 4–7 дней (очевидно, зависит от объема образованной за тренировку и-РНК). В подтверждение можно напомнить данные о ходе структурных преобразований в мышечных волокнах и согласующихся с ними субъективных ощущениях после работы мышцы в эксцентрическом режиме, первые 3–4 дня наблюдаются нарушения в структуре миофибрилл (около Z-пластинок) и сильные болевые ощущения в мышце, затем МВ нормализуется и боли проходят. Можно привести также данные собственных исследований, в которых было показано, что после силовой тренировки концентрация Мо в крови утром натощак в течение 3–4 дней находится ниже обычного уровня, что свидетельствует о преобладании процессов синтеза над деградацией. Логика происходящего при выполнении силовой тренировки представляется в основном корректной, однако доказать ее истинность может лишь эксперимент. Проведение эксперимента требует затрат времени, привлечения испытуемых и др., а если логика окажется где-то порочной, то придется вновь проводить эксперимент. Понятно, что такой подход возможен, но мало эффективен. Более продуктивен подход с применением модели организма человека и имитационным моделированием физиологических функций и структурных, адаптационных перестроек в системах и органах. В нашем распоряжении теперь имеется такая модель, поэтому возможно в короткое время систематически изучать процессы адаптации на ЭВМ и проверять корректность планирования физической подготовки. Эксперимент же теперь можно проводить уже после того как будет ясно, что грубых ошибок в планировании не допущено.
Из описания механизма должно быть ясно, что ММВ и БМВ должны тренироваться в ходе выполнения разных упражнений, разными методиками.
В западной литературе, на основе данных опытов над животными, предлагают несколько механизмов гиперплазии миофибрилл в мышечных волокнах.
Например:
- растягивание мышц - важный стимул воздействия на ДНК и образования РНК. В 1944 г. Томсен и Луко зафиксировали суставы кошек, мышцы были растянуты. Произошло увеличение растянутых мышц в течение 7 дней. Давайте подумаем. Почему так быстро? Каково было влияние гормонов, ведь кошки находились в сильнейшем стрессе? В растянутой мышце и в гипсе было нарушено кровоснабжение, кошка эти мышцы напрягала, сопротивлялась – выполняла статодинамические упражнения сутками! Таким образом, в результате проделанного опыта были реализованы в организме основные факторы – повышена концентрация гормонов, мышцы были закислены, концентрация свободного креатина была повышена. А само растяжение мышцы было лишь предпосылкой для появления факторов стимулирующих гиперплазию миофибрилл. Поэтому информация (Голдспик с соавторами в 1991 г.) о росте массы мышцы кролика на 20% и содержания РНК в 4 раза, за 4 дня у кролика с растянутой мышцей, в гипсе, является прекрасным подтверждением теории гиперплазии миофибрилл изложенной нами.
Идея влияния растяжения на транскрипцию генов неоднократно проверялась, но ни один из авторов так и не проверили, а был ли стресс (конечно животное мучается), повысилась ли концентрация анаболических гормонов в крови и в тканях.
Так вот, на основании таких «животных» фактов Ю.В.Верхошанский и многие «теоретики» силовой подготовки на западе предложили идею выполнения спрыгивания с высоты 1,0–1,2 м для развития силы мышц разгибателей суставов ног. Очевидно, что травмирующий эффект этих упражнений намного превышает какой-либо полезный эффект.

Эксцентрическая тренировка более эффективна чем концентрическая. Этот результат был получен в работе Higbie, Elizabeth с соавторами (Journal of Applied Physiology 1994 г). После 30 тренировок на изокинетическом динамометре с интенсивностью 70%мак, по десять повторений с тремя подходами 3 раза в неделю. Одна группа тренировалась в концентрическом режиме работы мышц, а другая с эксцентрическим. В результате поперечник мышечных волокон вырос примерно одинаково - 15–20%, а сила на 12–14%, в эксцентрическом режиме тестирования у группы с эксцентрической тренировкой сила выросла на 34%.

Интерпретация результатов тренировки должна быть следующей. Продолжительность напряжения мышцы была 1 с, интервал отдыха 2с, количество повторений 10, поэтому затраты АТФ и КрФ и накопление ионов водорода были в обеих случаях примерно одинаковы. Для преодоления сопротивления в эксцентрическом режиме надо было рекрутировать больше ДЕ, поэтому в группе с эксцентрическим режимом тренировки должн был сформировться особый навык выполнения упражнения, что и подтвердило тестирование. В обеих тренировках были созданы условия для гиперплазии миофибрилл в ГМВ – рост концентрации анаболических гормонов, появление свободного креатина, повышение концентрации ионов водорода в мышце. Следовательно, не форма упражнения влияет на гиперплазию миофибрилл, а биологические факторы стимулирующие транскрипцию ДНК (считывание информации с генов - наследственности). Кстати, изученный вариант тренировки оказался низкоэффективным, поскольку за 30 тренировок средний прирост силы составил 0,5% за тренировку. При правильной организации тренировки сила растет по 2% за тренировку.

В.Н.Селуянов
(записи Андрея Антонова)

Часть первая

Данной публикацией открывается цикл бесед с профессором Виктором Николаевичем Селуяновым, посвящённых наиболее современным и научно обоснованным методам тренировок. Некоторые поклонники "железной игры" наверняка воспримут многое из сообщённого Селуяновым в штыки: уж слишком разительно отличаются научные методы от общепринятых представлений, считающихся пока в силовом мире незыблемыми. Виктор Николаевич разбивает в пух и прах огромное число устоявшихся стереотипов — и делает он это с убийственной логикой, основанной на глубоких знаниях анатомии, физиологии и биохимии. Поэтому не стоит бросать чтение данного текста и возвращаться к трудам так называемых "практиков". Ибо реальная наука "зрит в корень", объясняет истинные причины явлений и, значит, использует для вывода своих прогнозов и рекомендаций правильные теоретические модели.

К сожалению, связь между передовой наукой и нынешней узкой практикой пока оставляет желать лучшего. Сегодня всё ещё переиздаются давно устаревшие учебники теории и методики физической культуры и спорта. Труды Матвеева, Зациорского, Верхошанского грешат поверхностными подходами и потому содержат формально-логические рекомендации без биологического обоснования. Но это не вина перечисленных авторов, ибо на момент написания ими своих трудов ещё не было такого объёма биологической информации, не было таких методов исследования, не было такого технического оборудования, как сейчас — и специалистам прежних времён приходилось додумывать, выдвигать гипотезы, которые в дальнейшем перешли, увы, в разряд устоявшихся представлений. Хотя изначально, как отмечалось, толком не обоснованных. Теперь эти некорректные представления механически переписываются из учебника в учебник, и длится сие уже более полувека — в то время как современные научные биологические исследования безвестно покоятся в узкоспециализированных научных изданиях. И не выходят не только на массового читателя, но даже на издателей книг по спортивной тематике. Поэтому пропасть между теорией, то есть биологическими науками, и нынешней так называемой "практикой" продолжает увеличиваться.

Изложение в данном тексте начнётся с азов. Правда, в нём не будет детальных сведений о строении и о биохимии клетки, но ряд основных положений придётся всё же разобрать — дабы понимать, какие процессы происходят в мышцах под воздействием различных тренировок. Придётся построить модели систем и органов человека, чтобы на этой основе описывать и предсказывать адаптационные процессы.

"Железный мир" (ЖМ): Виктор Николаевич, начните ваш рассказ с базовых сведений, необходимых для понимания биологических процессов в мышце.

Виктор Селуянов (ВС): Начну с рассказ об устройстве клетки. Мышечная клетка или, как её ещё называют, мышечное волокно представляет собой большую клетку, имеющую форму удлинённого цилиндра диаметром от 12 до 100 мкм и по длине чаще всего соответствующую длине целой мышцы. Группы мышечных волокон образуют пучки, которые, в свою очередь, объединяются в целую мышцу. Эта мышца заключена в плотный чехол из соединительной ткани, и последний переходит на концах мышцы в сухожилия, крепящиеся к костям.

Сократительным аппаратом мышечного волокна являются особые органеллы — миофибриллы, которые у всех животных имеют примерно равное поперечное сечение, колеблющееся от 0,5 до 2 мкм. Число миофибрилл в одном волокне достигает двух тысяч. Миофибриллы состоят из последовательно соединённых саркомеров, каждый из коих включает в себя нити (миофиламенты) актина и миозина. Миозин крепится к Z-пластинкам титином. При растяжении мышцы титин тоже растягивается и может порваться, что приводит к разрушению миофибриллы и, тем самым, к усилению катаболизма. Между филаментами актина и миозина могут образовываться мостики, и при затрате энергии, заключённой в молекулах аденозинтрифосфорной (АТФ) кислоты, происходит поворот мостиков, то есть сокращение миофибриллы, сокращение мышечного волокна, сокращение мышцы и их, мостиков, разрыв. Основная энергия молекул АТФ тратится именно на разрыв мостиков. Мостики образуются при наличии в саркоплазме ионов кальция. Увеличение количества миофибрилл (гиперплазия) в мышечном волокне приводит к увеличению поперечного сечения (гипертрофии) и, следовательно, к увеличению силы и скорости сокращения при преодолении существенной внешней нагрузки. Удельная сила, приходящаяся на поперечное сечение мышечных волокон, у всех людей — будь то старушка или суперпауэрлифтёр — примерно одинакова.

Кроме миофибрилл, для работы мышечного волокна огромное значение имеют такие органеллы, как митохондрии, то есть энергетические станции клетки, в которых с помощью кислорода идёт превращение жиров или глюкозы в углекислый газ (СО 2), в воду и в энергию, заключённую в молекулах АТФ. Для увеличения мышечной массы и силы необходимо увеличивать в мышечных волокнах количество миофибрилл, а для увеличения выносливости — количество в них митохондрий.

ЖМ: Расскажите об энергетике мышечных волокон.

ВС: Специалисты описывают энергетические процессы обычно таким образом, что они будто бы происходят сразу в целом организме. И получается, что при таком описании весь организм представляется в виде пробирки, в которой разворачиваются биохимические процессы. В связи с чем вполне логически корректно — в полном соответствии с такой нелепой моделью — рождаются и представления о МПК и АнП, одинаковые для всех видов упражнений, а причиной появления АнП объявляется недостаток кислорода в крови. Однако совершенно очевидно, что биохимические процессы в организме как целом идти не могут, они могут идти лишь в определённых клетках. Поэтому интерпретация физиологических явлений с применением описанной модели организма как пробирки ведёт к ошибочным представлениям. Увеличение сложности и точности модели расширяет круг явлений, доступных для корректной интерпретации.

Ещё раз: биоэнергетические процессы происходят именно в клетках. В клетке энергия используется только в виде АТФ. Высвобождение энергии, заключённой в АТФ, осуществляется благодаря ферменту АТФ-азе, которая имеется во всех местах, где требуется энергия. Именно по активности АТФ-азы в головках миозина мышечные волокна разделяют на быстрые и на медленные. Активность миозиновой АТФ-азы заложена в ДНК, а информация о строительстве быстрой или медленной изоформы АТФ-азы зависит от частоты приходящих к МВ импульсов от мотонейронов спинного мозга. Максимальная частота импульсации зависит от размера мотонейрона. И поскольку размер мотонейрона поменять невозможно, то мышечная композиция наследуется и практически не меняется под действием тренировочного процесса. Правда, мышечную композицию можно изменить с помощью электростимуляции — однако такое изменение обязательно окажется лишь временным.

Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают новый гребок. Энергия АТФ требуется именно для разъединения мостиков. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени совершается большее количество гребков мостиками, то есть мышца сокращается быстрее.

Доказательством использования АТФ для расцепления актин-миозиновых мостиков являются эксперименты с определением энергозатрат при подъёмах и при спусках по лестнице. При подъёме КПД составляет 20-23%, а при спуске метаболические затраты практически исчезают, и остаются затраты только на уровне покоя — основного обмена. Поэтому при той же механической мощности КПД на спуске превышает 100%. Это означает, что при выполнении эксцентрических упражнений (в виду имеется растяжение разгибателей коленного сустава) механическая энергия тратится на разрыв актин-миозиновых мостиков, а химическая энергия молекул АТФ не тратится. Причём правильно тренированная мышца после таких упражнений не болит — следовательно, разрушений в мышечных волокнах не происходит.

Запаса АТФ в миофибриллах хватает на одну-две секунды высокоинтенсивной работы. Под воздействием миозиновой АТФ-азы АТФ распадается на АДФ и на фосфор, высвобождая большое количество энергии и ион водорода. Но с первой же секунды работы в мышце разворачивается процесс ресинтеза миофибриллярных АТФ за счёт креатинфосфата (КрФ). КрФ распадается на головке миозина, поскольку там же имеется фермент креатифосфокиназа. В итоге образуется свободный креатин, фосфор и энергия, достаточная для соединения АДФ, фосфора и иона водорода. Молекулы АТФ крупные, поэтому они не могут перемещаться по клетке. В связи с чем по клетке перемещаются КрФ, Кр и Ф. Это явление исследователи назвали креатинфосфатным шунтом. Ресинтез КрФ может выполняться только с помощью молекул АТФ. Митохондриальные молекулы АТФ ресинтезируют КрФ, а АДФ, Ф и ион водорода проникают обратно в митохондрию. Молекулы АТФ, ресинтезируемые в ходе гликолиза, могут также использоваться для ресинтеза КрФ.

ЖМ: А что такое мышечная композиция?

ВС: Классифицировать мышечные волокна можно, как минимум, двумя способами. Первый способ — классифицировать мышечные волокна по скорости сокращения мышцы. В этом случае все волокна делятся на быстрые и на медленные. Сей подход к классификации определяет наследственно обусловленную мышечную композицию. Обычно мышечную композицию определяют с помощью взятия биопробы из латеральной головки мышцы бедра. Но данные, полученные для данной мышцы, не коррелируют с биопробами других мышц. Например, бегуны на средние и на длинные дистанции имеют большую долю медленных мышечных волокон (ММВ) в латеральной головке мышцы бедра — а в их мышцах задней поверхности бедра и в их икроножной мышце больше быстрых мышечных волокон (БМВ). У стайера же все мышцы ног имеют преимущественно ММВ.

Существует и второй способ классификации. Если при первом способе разделение идёт по ферменту миофибрилл (по миозиновой АТФ-азе), то во втором — по ферментам аэробных процессов, по ферментам митохондрий. В этом случае мышечные волокна делят на окислительные и на гликолитические. Те мышечные волокна, в которых преобладают митохондрии, называют окислительными. В них молочная кислота практически не образуется. В гликолитических же волокнах, наоборот, очень мало митохондрий, поэтому в них образуется много молочной кислоты.

Так вот в этих классификациях и начинается путаница. Большинство людей почему-то понимают ситуацию так, что быстрые волокна всегда гликолитические, а медленные — всегда окислительные, и потому ставит знак равенства между этими двумя совершенно разными классификациями. Что, повторяю, абсолютно неверно. При правильно построенном тренировочном процессе быстрые волокна можно сделать окислительными, значительно увеличив в них количество митохондрий, и они перестанут утомляться, то есть перестанут образовывать молочную кислоту. Почему сие будет происходить? Потому, что промежуточный продукт пируват превращается не в лактат, а поступает в митохондрии, где окисляется до воды и углекислого газа.

Спортсмены с быстрыми и в то же время окислительными МВ показывают выдающиеся результаты в видах спорта, требующих выносливости, если нет других лимитирующих факторов. Например, выдающиеся велосипедисты-профессионалы — Меркс, Индурайн и Армстронг — при выполнении ступенчатого теста до МПК закислялись только до 6мМ/л лактата в крови. У обычных же гонщиков концентрация лактата достигает 12-20мМ/л.

И наоборот, медленные волокна тоже могут быть гликолитическими, хотя этот вариант в литературе и не описывается. Но всем известно, что если человек лежит в больнице предоперационный период, а затем ещё и послеоперационный период, то потом он сам уже и встать не может, не может ходить. Первая причина этого понятна: нарушается координация. Но вторая причина — слабеют мышцы. И, самое главное, исчезают митохондрии из медленных мышечных волокон (период их "полураспада" составляет всего от двадцати до двадцати четырёх дней). Если человек пролежит 50 дней, то от его митохондрий почти ничего не останется, МВ превратятся в гликолитические. Ибо медленные или быстрые МВ наследуется, в то время как митохондрии стареют, а создаются они только тогда, когда мышцы начинают активно функционировать. Поэтому после периода длительного покоя даже медленная ходьба поначалу вызывает закисление крови, что и доказывает наличие в мышцах только ГМВ, а вовсе не отсутствие кислорода в крови.

ЖМ: Расскажите подробнее о молочной кислоте: из чего она состоит и какую пользу и вред может принести накопление её составляющих в мышцах?

ВС: Молочная кислота состоит из аниона — отрицательно заряженной молекулы лактата и из катиона — положительно заряженного иона водорода. Лактат — это крупная молекула, поэтому он не может участвовать в химических реакциях без помощи ферментов и, значит, не может повредить клетке. Ион же водорода — это даже не атом, а всего лишь протон, элементарная частица. Поэтому ион водорода легко проникает в сложные структуры и приводит к существенным химическим разрушениям. При очень большой концентрации ионов водорода разрушения могут привести к катаболизму ещё и с помощью ферментов лизосом. Лактат с помощью лактатдегидрогеназы сердечного типа может преобразоваться обратно в пируват, а тот, благодаря работе фермента пируватдегидрогеназы, превращается в ацетилкоэнзим-А, который поступает в митохондрию и становится субстратом окисления. Следовательно, лактат является углеводом, источником энергии для митохондрий ОМВ, а ион водорода вызывает существенные разрушения в клетке, усиливая катаболизм.

ЖМ: А как на практике определить мышечную композицию?

ВС: Международный стандарт здесь таков: берут кусочек мышечной ткани (как правило, из мышцы бедра — из её наружной головки) и биохимическими методами определяют соотношение быстрых и медленных волокон. Часть той же самой порции подвергают ещё одному анализу, при котором определяют количество ферментов митохондрий.

Однако в нашей лаборатории ещё под руководством Ю.В.Верхошанского были разработаны внешне опосредованные, косвенные, но, как сие ни странно, куда более точные методы. Тестирование выполнялось на универсальном динамографическом стенде (УДС). Мы на нём определяли скорость нарастания усилия. И оказалось, что она связана с соотношением быстрых и медленных волокон. Потом такие же исследования выполнил Коми в Финляндии. Он нашёл корреляционную зависимость между мышечной композицией (быстрые и медленные МВ) и крутизной нарастания силы. Но мы пошли дальше и разделили градиент силы на саму силу, то есть получили относительный показатель, который работает очень хорошо. Мало того, это вообще, как отмечалось выше, куда более точный, чем биопсия, метод, поскольку в нём скорость напряжения мышцы измеряется напрямую.

В частности, мы разделяем бегунов стайеров и бегунов на средние дистанции именно по этому показателю. У стайеров медленными являются мышцы как передней, так и задней поверхностей бедра, в то время как у бегунов на 800 м мышцы передней поверхности бедра такие же медленные, как у стайеров, а вот зато задние — быстрые, как у хороших спринтеров. Поэтому специалисты на 800 м быстро бегут 100 м с ходу, и именно эти мышечные волокна берегут до самого финиша. За 100-150 м до финиша они изменяют технику бега — спортсмены сами говорят, что они "переключают скорость", как в автомобиле.

ЖМ: Значит, если брать биопсию из четырёхглавой мышцы бедра, то можно здорово ошибиться — поскольку соотношение волокон в разных мышцах неодинаково?

ВС: Совершенно верно. В последнее время накопилось много материалов, которые свидетельствуют, что если одна мышца — например, прямая мышца бедра, — медленная, то совсем не обязательно, что и все остальные мышцы такие же. Интересно, что у спринтеров передняя поверхность бедра не быстрая и не медленная, а вот задняя поверхность — быстрая. И, тем более, быстры икроножная и камбаловидная. А иначе и быть не может. Но биопсию всё равно тупо берут из боковой поверхности бедра — в связи с чем результаты, например, для спринта получаются некорректные: неинформативные.

ЖМ: А что получается при применении вашего метода?

ВС: При применении нашего метода всё оказывается нормально. Ведь для измерения силы и градиента силы нет никаких ограничений. Кроме того, тут невозможно нанести мышцам вред, как это бывает при взятии биопсии. Для реализации нашего метода сейчас имеется в наличии изокинетический динамометр (БИОДЕКС). Измерения показали, что у спринтеров передняя поверхность бедра довольно быстрая и очень сильная, а задняя — тем более. Если же взять прыгунов, то у них до 90% быстрых волокон сосредоточено в передней поверхности бедра — ибо здесь находятся главные для них мышцы. Но в беге всё-таки более важна именно задняя поверхность, потому-то она и часто рвётся. Например, при обследовании сборной команды горнолыжников мы нашли только двух одарённых спортсменов (очень сильных и быстрых), которые и сейчас продолжают успешно выступать в российских соревнованиях. А вот среди женщин не было ни одной подходящей — потому у России пока и нет успехов на международной арене. Таким спортсменкам не помогут никакие иностранные тренеры.

ЖМ: Вы можете привести усреднённые данные по соотношению быстрых и медленных волокон в основных мышечных группах?

ВС: Хорошо известно, что у человека мышцы ног в среднем имеют больше медленных МВ (I тип 50%, II тип 50%), а в мышцах рук меньше медленных (I тип 30%, II тип 70%). При этом имеется индивидуальное разнообразие, которое лежит в основе профессионального отбора в спорте.

ЖМ: Насколько резко выражен переход от быстрых волокон к медленным в отдельно взятой мышце?

ВС: Мышечная композиция обычно определяется по строго определённым методикам биохимической обработки пробы мышечной ткани. В рамках установленного метода определяют 2 типа МВ и ещё 2-4 подтипа. Однако при изменении методики обработки биопробы можно получить существенно большее количество типов МВ. Для практики спорта отработанная методика классификации МВ остаётся пока удовлетворительной.

Список сокращений:



АнП — анаэробный порог
АэП — аэробный порог
МВ — мышечное волокно


КрФ — креатинфосфат
Кр — креатин
Ф — неорганический фосфат

Часть вторая

"Железный мир" (ЖМ): Виктор Николаевич, расскажите о методах гиперплазии миофибрилл в мышечных волокнах, ибо это тема в наибольшей степени интересует читателей нашего журнала.

Виктор Селуянов (ВС): Цель силовой подготовки — увеличить число миофибрилл в мышечных волокнах. Достигается это с помощью хорошо известной силовой тренировки, которая должна включать в себя упражнения с 70-100% интенсивностью, причём каждый подход продолжается до отказа. Это хорошо известно, однако смысл такой тренировки и процессы, разворачивающиеся в мышцах в ходе выполнения упражнений и при восстановлении, раскрыты ещё недостаточно полно.

Силовое воздействие человека на окружающую среду есть следствие функционирования его мышц. Мышца состоит из мышечных волокон (МВ) — особых клеток. Для увеличения силы тяги МВ необходимо добиться гиперплазии (увеличения) миофибрилл. Этот процесс возникает при ускорении синтеза белка и в то же время при прежних темпах его распада.

В физиологической литературе имеются материалы по изучению различных факторов, влияющих на рост силы. Обобщение данных материалов приводит практиков к мысли, что механическое напряжение в мышце является стимулом к гиперплазии миофибрилл. Надо отметить, что это мнение явно порочное, поскольку взято из экспериментов на животных, которым делали операции и заставляли непрерывно часами выдерживать какие-либо механические нагрузки. В этих случаях животные испытывают колоссальный стресс, и у них выделяется много гормонов. Следовательно, сила тут растёт не от напряжения мышц, а от повышения концентрации гормонов. На основе результатов этих "животных" экспериментов появились методики применения так называемых "негативных" нагрузок (то есть сопротивление нагрузкам, большим максимальной силы), эксцентрические тренировки — например, так называемые "прыжки в глубину", то есть спрыгивание с возвышений, переходящее в отскок вверх (Ю.В.Верхошанский по данным диссертационного исследования В.Денискина). Эти идеи появились ещё больше двадцати лет назад, но данные о морфологических изменениях в МВ после эксцентрических тренировок научному миру пока не предоставлены.

ЖМ: Какие же основные факторы влияют на рост мышечной массы?

ВС: Более внимательный анализ физиологических исследований последних лет позволил выявить четыре основных фактора, определяющих ускоренный синтез белка (образование и-РНК в ядре) в клетке:

1) Запас аминокислот в клетке.

2) Повышенная концентрация анаболических гормонов в крови и в мышце.

3) Повышенная концентрация "свободного" креатина в МВ.

4) Повышенная концентрация ионов водорода в МВ.

Второй, третий и четвёртый факторы прямо связаны с содержанием тренировочных упражнений.

Механизм синтеза органелл в клетке, в частности, миофибрилл можно описать следующим образом. В ходе выполнения упражнения энергия АТФ тратится на образование актин-миозиновых соединений, то есть на выполнение механической работы. Ресинтез АТФ идёт благодаря запасам КрФ. Появление свободного Кр активизирует деятельность всех метаболических путей, связанных с образованием АТФ (гликолиз в цитоплазме, аэробное окисление в митохондриях, которые могут находиться рядом с миофибриллами или в ядрышке, или на мембранах СПР). В БМВ преобладает М-ЛДГ, поэтому пируват, образующийся в ходе анаэробного гликолиза, в основном трансформируется в лактат. В ходе такого процесса в клетке накапливаются ионы Н. Мощность гликолиза меньше мощности затрат АТФ, поэтому в клетке начинают накапливаться Кр, Н, La, АДФ и Ф.

Наряду с важной ролью в определении сократительных свойств в регуляции энергетического метаболизма накопление свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах. Доказано, что между содержанием сократительных белков и содержанием креатина имеется строгое соответствие. Свободный креатин, видимо, влияет на синтез и-РНК, то есть на транскрипцию в ядрышках МВ. В лаборатории биохимии ПНИЛ ГЦОЛИФК было показано, что применение препаратов креатина при подготовке спринтеров позволил в течение года достоверно улучшить спортивные результаты в спринте и в прыжках, однако показатели аэробных возможностей стали даже хуже.

ЖМ: То есть при тренировках на выносливость дополнительный приём препаратов креатина не целесообразен? А с чем это связано? Ведь производители спортивного питания всегда подчёркивают рост выносливости при приёме препаратов этой группы.

ВС: То, что при тренировках на выносливость приём креатина нецелесообразен — это поспешный вывод. Оценка аэробных возможностей проводилась по максимальному потреблению кислорода (МПК). Но это порочный способ — ибо МПК зависит от массы активных митохондрий в работающих мышцах, в дыхательной мускулатуре и в миокарде. Для оценки потребления кислорода активными мышцами нужно определять потребление кислорода на уровне анаэробного порога. На самом деле КрФ является челноком, транспортирующим энергию от митохондрий к миофибриллам, поэтому повышение концентрации КрФ в МВ после приёма креатинмоногидрата существенно повышает работоспособность спортсменов на всех режимах работы, — в том числе от спринта до стайерского бега.

Важнейшим фактором, усиливающим гиперплазию миофибрилл, является повышение уровня анаболических гормонов в крови, а затем и в ядрах клеток активных тканей. Этот факт доказали в "экспериментах на себе" практически все штангисты и культуристы. Повышение концентрации, например, гормона роста зависит от массы активных мышц, от степени их активности и от психического напряжения.

Предполагается, что повышение концентрации ионов водорода вызывает лабилизацию мембран (увеличение размеров пор в мембранах), что ведёт к облегчению проникновения гормонов в клетку, активизирует действие ферментов, облегчает доступ гормонов к наследственной информации, то есть к молекулам ДНК. В ответ на одновременное повышение концентрации Кр и Н и-РНК образуются гораздо интенсивнее. Срок жизни и-РНК короток — он составляет всего лишь несколько секунд в ходе выполнения силового упражнения плюс пять минут в паузе отдыха. Затем молекулы и-РНК разрушаются. Однако анаболические гормоны сохраняются в ядре клетки несколько суток, пока не будут полностью метаболизированы с помощью ферментов лизосом и переработаны митохондриями до углекислого газа, воды, мочевины и др. простых молекул.

При выполнении силового упражнения до отказа, например 10 приседаний со штангой с темпом одно приседание за 3-5 сек., упражнение длится до 50 сек. Теоретический анализ показывает, что в мышцах в это время идёт циклический процесс: опускание и подъём со штангой 1-2 сек. выполняется за счёт запасов АТФ; за 2-3 сек. паузы, когда мышцы становятся малоактивными (нагрузка распространяется вдоль позвоночного столба и костей ног), происходит ресинтез АТФ из запасов КрФ, а КрФ ресинтезируется за счёт аэробных процессов в ММВ и анаэробного гликолиза в БМВ. В связи с тем, что мощность аэробных и гликолитических процессов значительно ниже скорости расхода АТФ, запасы КрФ постепенно исчерпываются, и продолжение упражнения заданной мощности становится невозможным — то есть наступает отказ. Одновременно с развёртыванием анаэробного гликолиза в мышце накапливается молочная кислота и ионы водорода (в справедливости приведённой информации можно убедиться по данным исследований на установках ЯМР). Ионы водорода по мере накопления разрушают связи в четвертичных и в третичных структурах белковых молекул, что приводит к изменению активности ферментов, к лабилизации мембран, к облегчению доступа гормонов к ДНК. Очевидно, что чрезмерное накопление или увеличение длительности действия кислоты даже не очень большой концентрации может привести к серьёзным разрушениям, после которых разрушенные части клетки должны быть удалены. Нужно специально отметить, что повышение концентрации ионов водорода в саркоплазме стимулирует развитие реакции перекисного окисления. Свободные радикалы способны вызвать фрагментацию митохондриальных ферментов, протекающую наиболее интенсивно при низких, характерных для лизосом, значениях рН. Лизосомы участвуют в генерации свободных радикалов, то есть в катаболических реакциях. В частности, в исследовании А.Salminen e.a. (1984) на крысах было показано, что интенсивный (гликолитический) бег вызывает некротические изменения и 4-5-кратное увеличение активности лизосомальных ферментов. Совместное действие ионов водорода и свободного Кр приводит к активизации синтеза и-РНК. Известно, что Кр присутствует в мышечном волокне в ходе упражнения и ещё в течение 30-60 сек. после него, пока идёт ресинтез КрФ. Поэтому можно считать, что за один подход к снаряду спортсмен набирает около одной минуты чистого времени, когда в его мышцах происходит образование и-РНК. При быстром повторении подходов количество накопленной и-РНК растёт — но растёт одновременно с повышением концентрации ионов Н. Поэтому возникает противоречие, то есть тут можно разрушить больше, чем потом будет синтезировано. Избежать этого получится при увеличении интервалов отдыха между подходами или при тренировках несколько раз в день с небольшим числом подходов в каждой тренировке — как это имеет место в тренировках И.Абаджиева и А.Бондарчука.

Вопрос об интервале отдыха между днями силовой тренировки связан со скоростью реализации и-РНК в органеллы клетки, в частности, в миофибриллы. Известно, что сама и-РНК распадается в первые десятки минут после окончания упражнения, однако структуры, образованные на её основе, синтезируются в органеллы в течение ещё 4-7 дней (очевидно, это зависит от объёма образованной за тренировку и-РНК и от концентрации в ядре анаболических гормонов). В подтверждение можно напомнить данные о ходе структурных преобразований в мышечных волокнах и о согласующихся с ними субъективных ощущениях после работы мышцы в эксцентрическом режиме: первые 3-4 дня наблюдаются нарушения в структуре миофибрилл (около Z-пластинок) и сильные болевые ощущения в мышце, затем МВ нормализуется и боли проходят. Можно привести также данные наших собственных исследований, в которых было показано, что после силовой тренировки концентрация Мо в крови утром натощак в течение 3-4 дней находится ниже обычного уровня, что свидетельствует о преобладании процессов синтеза над процессами разрушения. Логика происходящего при выполнении силовой тренировки представляется в основном корректной, однако доказать её истинность может лишь эксперимент. Проведение эксперимента требует затрат времени, привлечения испытуемых и др., а если логика окажется где-то порочной, то придётся вновь проводить эксперимент. Понятно, что такой подход возможен, но малоэффективен.

Более продуктивен подход с применением модели организма человека, то есть подход с моделированием физиологических функций, а также структурных, адаптационных перестроек в системах и в органах. В нашем распоряжении такая модель уже имеется, поэтому теперь за короткое время можно систематически изучать процессы адаптации на ЭВМ и проверять корректность планирования физической подготовки. Эксперимент же теперь можно проводить уже после того, как будет ясно, что грубых ошибок в планировании не допущено.

Из описания механизма становится ясным, что ММВ и БМВ должны тренироваться в ходе выполнения именно разных упражнений, именно разными методиками.

На Западе же, где исходят именно из данных опытов над животными, предлагают несколько механизмов гиперплазии миофибрилл в мышечных волокнах. Например,

Растягивание мышц

Это мощный стимул воздействия на ДНК и на образование и-РНК. В 1944 г. Томсен и Луко зафиксировали суставы кошек, мышцы которых были растянуты. И увеличение растянутых мышц произошло в течение 7 дней. Давайте подумаем: почему сие произошло столь быстро? Каково было тут влияние гормонов — ведь кошки находились в сильнейшем стрессе? В растянутой мышце конечности, зафиксированной гипсовой повязкой, было даже нарушено кровоснабжение, но кошка эти мышцы напрягала, сопротивлялась — и тем самым выполняла статодинамические упражнения целыми сутками. Таким образом, в результате проделанного опыта в организме кошки были реализованы основные тренировочные факторы — повышены концентрации гормонов и свободного креатина, мышцы оказались закислены. А само растягивание мышцы было всего лишь предпосылкой для появления факторов, стимулирующих гиперплазию миофибрилл. Поэтому информация (Голдспик с соавторами в 1991 г.) о росте массы мышцы кролика на 20%, а также содержания РНК в 4 раза за 4 дня у кролика с растянутой мышцей конечности, зафиксированной гипсовой повязкой, является прекрасным подтверждением теории гиперплазии миофибрилл, изложенной выше.

Идея влияния растягивания на транскрипцию генов проверялась неоднократно, но никто так и не проверил: а был ли там стресс (конечно, животное тут мучилось), повысилась ли концентрация анаболических гормонов в крови и в тканях?

Так вот на основании именно таких "животных" фактов Ю.В.Верхошанский и многие другие "теоретики" силовой подготовки на Западе предложили идею выполнять спрыгивания с высоты 1,0-1,2 м для развития силы мышц разгибателей суставов ног. Но очевидно, что травмирующие последствия таких упражнений намного превышают какой-либо полезный эффект.

Кроме того, на Западе, исходя из данных опытов над животными, пришли к убеждению, что

Эксцентрическая тренировка более эффективна, чем концентрическая

Этот результат был получен в работе Higbie, Elizabeth с соавторами (Journal of Applied Physiology 1994) после 30 тренировок на изокинетическом динамометре с интенсивностью 70% от максимальной по десять повторений с тремя подходами 3 раза в неделю. Одна группа тренировалась в концентрическом режиме работы мышц, а другая — в эксцентрическим. В результате поперечник мышечных волокон вырос примерно одинаково — на 15-20%, а сила у группы с концентрическим режимом работы — на 12-14%. Однако у группы с эксцентрической тренировкой сила выросла на целых 34%.

Правильная интерпретация результатов данной тренировки должна быть следующей. Продолжительность напряжения мышцы была 1 сек., интервал отдыха — 2 сек., количество повторений — 10, поэтому затраты АТФ и КрФ и накопление ионов водорода были в обоих случаях примерно одинаковыми. Для преодоления сопротивления в эксцентрическом режиме надо было рекрутировать больше ДЕ, поэтому в группе с эксцентрическим режимом тренировки должен был сформироваться особый навык выполнения упражнения — что тестирование, собственно, и подтвердило. В обеих тренировках были созданы условия для гиперплазии миофибрилл в ГМВ: рост концентрации анаболических гормонов, появление свободного креатина, повышение концентрации ионов водорода в мышце. Следовательно, на гиперплазию миофибрилл влияет не форма упражнения, а биологические факторы, стимулирующие транскрипцию ДНК (считывание информации с генов). Кстати, изученный вариант тренировки оказался низкоэффективным, поскольку за 30 тренировок средний прирост силы составил всего лишь 0,5% за тренировку. При правильной же организации тренировки сила растёт по 2% за тренировку.

ЖМ: 2% — это при каком интервале отдыха между тренировками? Ведь Абаджиев рекомендовал своим подопечным 3-4 тренировки в день с максимальной и околомаксимальной нагрузкой 5 раз в неделю. Не мог же он добиваться прироста силы 30-40% в неделю?

ВС: Прирост силы по 2% наблюдается при выполнении классической силовой тренировки в динамическом режиме при интенсивности 70% ПМ. Количество подъёмов — до отказа (в среднем 6-12 раз). Интервал отдыха — 3-5 мин., количество подходов — 4-5. Количество тренировок — один раз в неделю. Через 2 месяца определяют прирост силы и делят его на количество тренировок. Надо заметить, что прирост силы имеется только у гликолитических МВ. Поэтому у стайеров, имеющих почти 100% ОМВ, очень плохо растут мышцы и их сила.

Абаджиев работал с выдающимися штангистами, у которых уже присутствовала гипертрофия мышц, поэтому он решал задачу повышения эффективности проявления силы уже имевшимися мышцами. При этом преследовались две цели:

— техническая: научиться выполнять работу с предельными нагрузками;

— физическая: научиться рекрутировать высокопороговые ДЕ и их мышечные волокна. В этом случае в них происходит гиперплазия миофибрилл. Штангист выходит на пик спортивной формы при минимальном росте мышечной массы. Мышечные волокна высокопороговых ДЕ наименее тренированы, поэтому даже при использовании несовершенной методики происходит гиперплазия миофибрилл. В МВ низкопороговых ДЕ гипертрофия существенная, поэтому ежедневные многоразовые тренировки не вызывают в них существенной гиперплазии миофибрилл.

Подъём околомаксимальных весов (90-95% ПМ) без достижения исчерпания КрФ и повышения концентрации ионов водорода не может вызвать гиперплазии, но повторение околомаксимальных упражнений в течение дня 4-6 раз приводит к суммации эффектов (концентрации анаболических гормонов в ядрах активных МВ).

Список сокращений:

АТФ — аденозинтрифосфорная кислота
АДФ — аденозиндифосфорная кислота
МПК — максимальное потребление кислорода
АнП — анаэробный порог
АэП — аэробный порог
МВ — мышечное волокно
ГМВ — гликолитическое мышечное волокно
ОМВ — окислительное мышечное волокно
ДНК — дезоксирибонуклеиновая кислота
КПД — коэффициент полезного действия
КрФ — креатинфосфат
Кр — креатин
Ф — неорганический фосфат

La — лактат

Часть третья. Гиперплазия миофибрилл в окислительных волокнах

В предыдущих публикациях было рассказано о методах гиперплазии миофибрилл в мышечных волокнах в целом и более подробно разобраны методы гиперплазии в гликолитических волокнах. Теперь профессор Селуянов расскажет о гиперплазии миофибрилл в окислительных волокнах. В литературе эта тема практически не раскрыта. Существует мнение, что мышечные объёмы и рост силы даёт только гипертрофия быстрых мышечных волокон. А роль медленных волокон настолько ничтожна, что ею можно пренебречь. Поэтому в силовых и в скоростно-силовых видах спорта силовая тренировка медленных мышечных волокон никогда не рассматривалась. Насколько это соответствует действительности, станет ясно в ходе очередной беседы с Виктором Николаевичем.

"Железный мир" (ЖМ"): Виктор Николаевич, действительно ли силовые возможности ММВ намного ниже, чем у БМВ?

Виктор Селуянов (ВС): Долгое время существовало мнение, что гипертрофия мышечных волокон не может превышать 30% от нормального состояния. Поэтому родилась идея, что у культуристов гипертрофия мышц обусловлена увеличением количества МВ. В связи с чем в 70-80-х годах прошлого столетия начались поиски фактов, подтверждающих эту идею (например, П.З.Груздь обнаружил расщепление гипертрофированных МВ).

В 90-е годы прошлого столетия шведский учёный Tesh с соавторами предоставил информацию о мышечной композиции у высококвалифицированных бодибилдеров. Было показано, что у нормального человека поперечное сечение МВ в среднем составляет 3000-4000 мкм 2 , а у спортсменов — 6000-25000 мкм 2 . Это означает, что МВ могут быть гипертрофированы в 4-6 раз. Следовательно, идея об увеличении числа МВ у культуристов потеряла актуальность. Однако остаётся идея об активации миосателлитов для увеличения в мышцах у спортсменов числа МВ. Но пока практически полезных результатов, увы, нет.

При правильной тренировке поперечное сечение ММВ и БМВ различаться не должны, поэтому не должно быть и проигрыша в силе — в то время как в скорости и в мощности ММВ должны проигрывать, поскольку тут ниже активность миозиновой АТФ-азы.

Надо чётко понимать — и подтверждением этого являются многочисленные исследования — что сила сокращения МВ зависит от его поперечного сечения (от количества миофибрилл в МВ). Удельная сила, то есть отношение силы МВ к его площади, одинакова у ребёнка и у взрослого, у мужчины и у женщины, у бабушки и у дедушки, а также у любого спортсмена.

ЖМ: Тренировка ММВ даёт прибавку даже в скоростно-силовых упражнениях. Познакомившись с вашими, Виктор Николаевич, работами, я узнал, что после тренировки ММВ улучшались, например, результаты в прыжках с места. Не могли бы вы рассказать об этом подробно?

ВС: Максимальная скорость сокращения ММВ и БМВ различается на 20-40%. При всём при том, что скорость сокращения в реальных спортивных действиях составляет не более 50% от максимальной скорости сокращения мышцы. Поэтому увеличение силы ММВ даёт прибавку скорости и мощности практически в любых видах спортивной деятельности. Это возможно даже в спринтерском беге.

Виктор Тураев и я провели специальное исследование, где выяснили, что 50% мощности в спринте выдают именно медленные волокна. Оказывается, бег на короткие дистанции — это цепочка далеко не самых быстрых движений, и ММВ работают там вполне комфортно. У нас был эксперимент с группой спринтеров из восьми человек, и в нём проводились тренировки на увеличение силы ММВ. Результаты спринтеров в беге на 100 м улучшились на 0,2-0,3 секунды: имея средний результат 10,9 сек., спринтеры стали бегать за 10,7 сек.

ЖМ: А есть ли необходимость отдельно тренировать ММВ? Они имеют порог возбудимости ниже, чем у БМВ и, соответственно, всегда включаются в работу вместе с последними. Если проводить тренировку, направленную на гипертрофию БМВ, описанную в предыдущей части текста, то ММВ всегда должны параллельно получать и свою долю нагрузки.

ВС: Да, сие правильно: при тренировке БМВ обязательно функционируют и ММВ. Однако во время выполнения силового упражнения с чередованием сокращения и расслабления мышц в ОМВ не накапливаются ионы водорода, поскольку митохондрии их поглощают и преобразуют в воду. Отсутствие этого фактора тормозит проникновение анаболических гормонов в ММВ (ОМВ), поэтому при классической силовой тренировке не наблюдается существенной гипертрофии ММВ. Для того чтобы убедиться в этом, надо открыть учебник "Физиология мышечной деятельности" (под ред. Я.М.Коца). Там есть таблица, из которой видно, что, по данным разных авторов, обычная силовая тренировка — тренировка для ГМВ, — не даёт существенного прироста гипертрофии ММВ (1 тип).

ЖМ: Значит ли это, что представители силовых видов спорта — например, пауэрлифтёры, — не использующие в своих тренировках методику гиперплазии миофибрилл в ОМВ, имеют неиспользованный резерв в развитии силы? И что — включив данную методику в свои тренировки, они гарантированно увеличат свои силовые результаты?

ВС: В тех видах спорта, где рост собственного веса не является ограничивающим фактором, — например, в бодибилдинге — выгодно увеличивать силу и набирать массу за счёт ОМВ (ММВ). В этом случае спортсмен работает с непредельными весами, и потому тут минимизируется травматизм. Выгодно увеличивать силу ММВ (ОМВ) и в армрестлинге, поскольку тут происходит рост массы мышц рук, но этот рост можно компенсировать снижением массы тела за счёт жира или массы мышц ног. Одновременно с ростом силы ОМВ (ММВ) идёт рост массы митохондрий, увеличивается локальная мышечная выносливость, а это очень важно для армрестлинга и для любых других видов единоборств.

Однако в пауэрлифтинге при выполнении приседа или тяги штанги выгодно использовать резерв увеличения силы тяги ОМВ (ММВ), поскольку они ничем не хуже БМВ (скорость сокращения мышц очень низкая). Выгодно это потому, что вес отягощения составляет всего 40-60% от ПМ, поэтому тут нет условий для получения травм и можно работать до отказа, то есть до сильного стресса, приводящего к выделению в кровь собственных анаболических гормонов, что будет частичной альтернативой приёму АС.

ЖМ: Ну что ж, значит, настало время поговорить и о самой методике. Тем более, что, насколько я знаю, вы, Виктор Николаевич, являетесь её разработчиком.

ВС: Да, данная методика была разработана именно в нашей лаборатории. Она похожа на ранее описанную методику для БМВ, и её основным отличительным условием является требование выполнять упражнение без расслабления тренируемых мышц. В этом случае напряжённые и утолщённые МВ пережимают капилляры ("Физиология мышечной деятельности", 1982) и тем самым вызывают окклюзию (остановку кровообращения). Нарушение кровообращения ведёт к гипоксии МВ, то есть тут интенсифицируется анаэробный гликолиз в ММВ (ОМВ), в них накапливается лактат и ионы водорода. Очевидно, что создать такие условия можно лишь при работе против силы тяжести или против тяги резинового амортизатора.

Приведу пример такого упражнения. Выполняются приседания со штангой 30-70% ПМ. Спортсмен из глубокого приседа встаёт до угла в коленных суставах 90-110 градусов:

интенсивность — 30-70% (а когда тренируют мышцы рук, в которых мало ОМВ, интенсивность меньше 10 — 40%);

продолжительность упражнения — 30-60 сек. (тут быстро наступает отказ из-за болей в мышцах);

интервал отдыха между подходами — 5-10 мин. (причём отдых должен быть активным);

число подходов к снаряду — 7-12;

количество тренировок в день — одна, две и более;

количество тренировок в неделю — упражнение повторяется через 3-5 дней.

Данные правила можно обосновать следующим образом. Интенсивность упражнения выбирается такой, чтобы были рекрутированы только ОМВ (ММВ). Продолжительность упражнения не должна превышать 60 сек., иначе накопление ионов Н может превысить оптимальную концентрацию для активации синтеза белка, а скорость катаболизма может превысить процессы строительства новых структур клеток.

Эффективность методики тренировки можно и повысить. Для этого надо увеличить время пребывания в ОМВ (ММВ) Кр и Н. Поэтому следует выполнять упражнение в виде серии подходов, а именно: первый подход — не до отказа (не более 30 сек.), затем — интервал отдыха 30 сек. Так повторяется три или пять раз, затем выполняется длительный отдых или упражняется другая мышца. Преимущество такого упражнения (в культуризме его называют "суперсерией") заключается в том, что Кр и Н присутствуют в ОМВ (ММВ) как в ходе упражнения, так и в паузах отдыха. Следовательно, суммарное время действия факторов (Кр, Н), вызывающих образование в том числе и-РНК, значительно увеличивается в сравнении с вариантами тренировки, описанными ранее.

Увеличение концентрации ионов водорода в ОМВ не может вызвать существенного катаболизма, поскольку в ОМВ много митохондрий, а последние очень быстро поглощают ионы водорода. В ГМВ митохондрий мало, поэтому ионы водорода там остаются надолго и вызывают сильнейшие разрушения — то есть тут имеет место катаболизм.

То, что данная методика работает, убеждает не только теория, но и практика тренировки выдающихся спортсменов. Например, Василий Алексеев — штангист-тяжеловес, имел проблемы c поясничным отделом позвоночника и потому не мог выполнять тяги с большими весами. В итоге Алексеев нашёл для себя секретное упражнение, которое никому не разрешал показывать. Он заходил в зал, всех выгонял и закрывался. Затем ложился лицом вниз бёдрами на гимнастического "козла" и выполнял наклоны с небольшой амплитудой (статодинамический режим работы мышц). Для увеличения нагрузки Алексеев брал на плечи штангу 40-60 кг. Понятно, что позвоночник был тут нагружен, то есть происходила тренировка ОМВ разгибателей спины.

Другой пример — Арнольд Шварценеггер. Основу его тренировок составляли тренировки в режиме "пампинга", то есть накачки мышц кровью. Эти упражнения делаются без расслабления мышц (статодинамический режим), поэтому происходит быстрое закисление ОМВ. В момент отдыха сие приводит к рефлекторному расслаблению гладкой мускулатуры артериол и к накоплению крови в мышцах (пампинг). Идея прихода питательных веществ с кровью неконструктивна, но зато приход анаболических гормонов, закисление ОМВ и множество свободного креатина стимулируют образование в ядрышках и-РНК.

ЖМ: Насколько быстро после таких тренировок происходит гипертрофия ОМВ (ММВ)?

ВС: Тут нжно учитывать, что медленные волокна могут занимать всего треть мышцы, а поперечник медленных мышечных волокон, как правило, на 30-40% меньше, чем у быстрых. Поэтому гипертрофия ОМВ происходит сначала незаметно, поскольку первым делом растёт плотность пучка миофибрилл за счёт появления новых нитей, и только потом растёт поперечник МВ — это когда вокруг новых миофибрилл появляются митохондрии. Но митохондрии занимают всего лишь 10% общего объёма мышцы. Так что основной рост поперечника мышцы происходит за счёт роста числа миофибрилл. Экспериментально показано, что при правильно организованной тренировки происходит рост силы на 2% за тренировку. Но только необходимо учитывать, что более одной развивающей тренировки в неделю выполнять нельзя, поскольку при слишком частых тренировках рост силы тормозится.

ЖМ: Допустимо ли при такой тренировке, чтобы отказ возникал не из-за болевых ощущениях в мышце, а, как и при тренировки ГМВ, из-за мышечного отказа? Пусть, например, спортсмен сделал 3 подхода по 30 сек. с интервалом отдыха 30 сек. в упражнении "жим штанги лёжа по ограниченной траектории движения", и в последнем подходе на 29-й секунде произошёл мышечный отказ, штанга поползла вниз, поскольку даже удержать её в статическом положении спортсмен уже не мог. При этом мышечная боль была умеренной. Будет ли такая тренировка направлена на гиперплазию ОМВ или же рекомендуется снизить вес штанги и сделать, например, 3 подхода по 40 секунд, чтобы причиной отказа стало всё-таки именно сильное жжение в мышце?

ВС: При выполнении силовых упражнений надо считать не количество подъёмов и не тонны — ибо это формальные критерии. В каждом подходе надо вызывать в организме определённые физиологические и биохимические процессы, о содержании которых спортсмен может догадываться по индивидуальным ощущениям. При тренировке ОМВ правильное ощущение — это боль в активной мышце, наступающая в результате накопления в мышце ионов водорода. Данная боль, повторяю, есть главное условие для активизации синтеза белка. Вместе с болью появляется стресс и выход анаболических гормонов в кровь. В достоверности оной информации можно убедиться по публикациям ИМБП в журнале "Физиология человека" (рук. д.б.н. О.Л.Виноградова). В данном примере, а именно, в работе продолжительностью 3 х 30 сек. с мышечным отказом, вес снаряда завышен, поэтому рекрутируются не только ОМВ, но и ПМВ, а также часть ГМВ. Такой вариант тренировки тоже имеет право на существование, но только эффект роста силы ОМВ здесь будет несколько меньше.

ЖМ: Но тут всё равно имеет место слишком большой разброс времени выполнения упражнения: от 30 сек. до 60 сек. в подходе. Поэтому возникает следующий вопрос: если в указанном примере спортсмен достигает мышечного отказа при 30 сек. работы в третьем подходе, то какой временной отрезок ему следует выбрать? Ведь спортсмен может подобрать вес до ощущения сильного жжения, выполняя и 3 х 45 сек., и, ещё снизив вес, 3 х 60 сек.

ВС: Критерием корректного выполнения упражнения является накопление в ОМВ молочной кислоты в оптимальной концентрации (10-15 мМ/л). В крови накопление молочной кислоты будет меньше. Это возможно при статодинамическом режиме работы мышц и при ограничении продолжительности выполнения упражнения. Эксперименты показывают, что оптимальная продолжительность статодинамического режима находится в пределах 30-60 сек., и если в это время спортсмен испытывает сильный стресс из-за болевых ощущений, то условия для роста силы ОМВ достигнуты. Поскольку ионы водорода могут усиливать катаболизм, то необходимо стремиться к более раннему возникновению боли в мышцах, то есть ближе к 30 сек.

ЖМ: В интернете (например, вот по этому адресу) имеются ролики, где вы, Виктор Николаевич, проводите семинар с борцами. Там вы всячески предостерегаете спортсменов от чрезмерного закисления, поскольку оно ведёт к разрушению митохондрий. Если спортсмен регулярно тренируется по вашей методике и работает до отказа из-за сильнейшего жжения в мышцах, то не "сожжёт" ли он в конце концов все свои митохондрии?

ВС: Эту проблему мы с вами уже обсуждали, здесь сделаю акцент на том, что в разных типах МВ ионы водорода вызывают свои специфические реакции. Действие ионов водорода (Н) обусловлено их концентрацией и длительностью присутствия в МВ. В ОМВ, даже при наличии высокой концентрации ионов водорода, в период отдыха митохондрии быстро устраняют их, поэтому ионы водорода не успевают повредить митохондрии и другие структуры МВ. Об этом свидетельствуют величины креатифосфокиназы и кортизола в крови после тренировки. Данные величины, как правило, в 2-3 раза ниже по сравнению с показателями в обычных силовых упражнениях. В ГМВ после классической силовой тренировки (динамической с интенсивностью 70-80% ПМ) ионы водорода не поглощаются митохондриями (их слишком мало), тут ионы водорода соединяются с лактатом, и молочная кислота медленно выходит в кровь за промежуток времени 10-60 мин. (кстати, активный отдых ускоряет выход молочной кислоты в кровь). В связи с этим митохондрии и другие структуры клетки подвергаются длительному разрушающему влиянию. Поэтому борцам нельзя тренироваться при сильном закислении мышц, им надо беречь митохондрии в ГМВ, ибо от них зависит локальная мышечная выносливость борца.

ЖМ: Приведите пример тренировочного цикла.

ВС: Результаты имитационного моделирования показали, что одним из рациональных вариантов тренировки является цикл, в котором одна тренировка носит развивающий характер. Через три дня силовая тренировка повторяется, но уже в меньшем объёме ("тонизирующая" тренировка), а всего цикл составляет семь дней. Одним из достоинств такого цикла является то, что он может использоваться в видах спорта, завязанных на выносливость. В дни отдыха могут использоваться тренировки для развития в МВ митохондрий или тренировки миокарда и диафрагмы. Эффективность теоретически разработанного микроцикла была проверена в ходе эксперимента.

Расскажу о конкретной методике. Семь студентов ИФК (длина тела 177,3 ± 11,8 см; масса тела 71,7 ± 9,7 кг; возраст 25,0 ± 4,8 г) два раза в неделю в течение шести недель выполняли силовые тренировки и два раза в неделю выполняли аэробные тренировки по 40-50 мин. с ЧСС АэП.

Первая силовая тренировка включала в себя три серии по три подхода в каждой. Отдых между сериями был активным — 12 мин., а между подходами — 30 сек. В каждом подходе упражнение выполнялось до отказа, длительность приседаний со штангой составляла 60-70 сек. Приседания выполнялись в статодинамическом режиме.

Вторая силовая тренировка включала в себя только четыре подхода с интервалом активного отдыха 8 мин., вес штанги и условия приседаний были теми же, что и в первой тренировке.

И вот какие были получены результаты. За период исследования испытуемые стали сильнее, они смогли поднять более тяжёлую штангу: до эксперимента 866 ± 276 Н, после эксперимента 1088 ± 320 Н (различия достоверны при р > 0,001). Средний прирост силы составил 222 Н (25,6%) или 2,1%/тр.день. Последний показатель должен характеризовать эффективность силовой тренировки, с его помощью можно сравнивать различные методы.

В обзорной работе М.McDonagh and С.Davies (1984) было проведено сравнение изотонического и изометрического методов силовой тренировки в различных вариантах. В частности, было показано, что изотоническая тренировка даёт прирост силы 0,4-1,1% за один тренировочный день, изометрическая — 0,9-1,1% за тренировочный день. Другие исследователи добивались лучших показателей: 2-3%, однако они использовали примерно такую же методику: интенсивность 80%, количество сокращений мышцы за тренировку 12-18, 21-24 тренировочных дня.

Таким образом, эффективность разработанной методики силовой тренировки выше изометрических и изотонических методов, за исключением тех тренировок, которые по технологии совпадают с разработанной нами. Следовательно, наша модель адекватно имитирует процессы синтеза миофибрилл как результат силовой тренировки.

ЖМ: Можно ли в одной тренировке совмещать упражнения на ГМВ и на ОМВ для одной мышечной группы?

ВС: Никаких принципиальных препятствий для такого совмещения нет. Но тут важно учитывать следующее:

— резервные возможности эндокринной системы;

— сначала нужно тренировать ГМВ, поскольку подъём больших весов требует свежести ЦНС и нормального состояния вспомогательных мышц.

ЖМ: Вы можете привести пример того, как в недельном или в двухнедельном циклах совместить тренировки, направленные на гипертрофию ГМВ и ОМВ для одной мышечной группы?

ВС: Пусть речь идёт о силовой подготовке в армрестлинге. В качестве средства подготовки выбираем тягу груза через блок в условии имитации соревновательного упражнения. Тренируем ОМВ — значит, выполняем статодинамическое упражнение с усилием 60% ПМ до боли (30 сек.) и через интервал отдыха 30 сек. повторяем этот цикл 3-6 раз (многое зависит тут от уровня локальной мышечной выносливости).

Затем идёт большой интервал отдыха — 10 мин. В это время надо сделать приседание со штангой в статодинамическом режиме — 1-2 подхода. Последнее необходимо потому, что при активности больших мышечных групп выделяется больше гормонов по сравнению с работой мышц рук.

Данный цикл суперсерии повторяется 4-9 раз — в зависимости от уровня локальной мышечной выносливости.

Такая развивающая силовая тренировка для гиперплазии миофибрилл ОМВ выполняется не чаще одного раза в неделю. Через 2-4 дня можно выполнить тонизирующую тренировку, которая в точности повторяет развивающую, но имеет число подходов, меньшее в 3-5 раз.

Тренировка ГМВ обеспечивается в армрестлинге собственно в рамках технико-тактической подготовки. Например, при отработке стартового усилия формируются навыки активации всех двигательных единиц (ДЕ) и одновременно роста силы ГМВ высокопороговых ДЕ.

Если имеется потребность в выполнении специальных тренировок для увеличения силы ГМВ, то эти тренировки развивающего характера должны выполняться перед тонизирующей тренировкой для поддержания процессов синтеза в ОМВ. Проявление больших усилий требует полного восстановления мышц, поэтому динамические силовые тренировки лучше выполнять после дня отдыха. В дальнейшем идёт процесс и период восстановления — 2-3 дня, поэтому тут можно выполнять силовую тонизирующую тренировку для ОМВ.

ЖМ: Сколько всего мышечных групп по данной методике можно тренировать в рамках одного занятия?

ВС: У квалифицированного спортсмена число подходов к весу составляет 30-60 раз. На это уходит 60-90 мин. В большой интервал отдыха (10 мин.) можно вставить тренировочные упражнения ещё для двух мышечных групп. Следовательно, за одну силовую тренировку можно проработать 3 мышечные группы — например, одну крупную и две мелкие или средние. Другие мышечные группы можно тренировать в этот же день или в другие дни. Суммарный объём силовых тренировок определяется состоянием эндокринной системы. Известно, что если принять реакцию эндокринной системы после первой силовой тренировки за 100%, то после второй силовой тренировки в тот же день концентрация анаболических гормонов в крови окажется ниже в 2-3 раза. Поэтому мышечные группы и силовые тренировки лучше распределить на несколько дней. Понятно, что при использовании анаболических стероидов объём силовых упражнений может быть существенно увеличен.

Список сокращений:

АТФ — аденозинтрифосфорная кислота
АДФ — аденозиндифосфорная кислота
МПК — максимальное потребление кислорода
АнП — анаэробный порог
АэП — аэробный порог
МВ — мышечное волокно
ГМВ — гликолитическое мышечное волокно
ОМВ — окислительное мышечное волокно
ДНК — дезоксирибонуклеиновая кислота
КПД — коэффициент полезного действия
КрФ — креатинфосфат
Кр — креатин
Ф — неорганический фосфат
и-РНК — информационная рибонуклеиновая кислота
рН — кислотно-щелочное равновесие
La — лактат

Часть четвёртая. Гиперплазия миофибрилл в гликолитических мышечных волокнах

Этой публикацией завершается цикл бесед с профессором Виктором Николаевичем Селуяновым, посвящённых современным биологически обоснованным научным методам тренировок.

"Железный мир" (ЖМ): Виктор Николаевич, в прошлой беседе вы рассказали о гиперплазии миофибрилл в мышечных волокнах. Как вы объяснили, ММВ и БМВ должны тренироваться в ходе выполнения разных упражнений, то есть по разными методиками. А какой должна быть правильная тренировка, если поставлена цель увеличить массу быстрых мышечных волокон?

Виктор Селуянов (ВС): Для начала надо разобраться с методами классификации мышечных волокон (МВ). Деление МВ на быстрые и на медленные выполняется после биопсии для определения активности фермента — миозиновой АТФ-азы. Мышечная композиция по этому ферменту наследуется и в каждой мышце своя. Реакция на силовое упражнение зависит от биологических факторов, стимулирующих образование в МВ и-РНК. К таким факторам относятся анаболические гормоны, свободный креатин, оптимальная концентрация ионов водорода в МВ и др. Поскольку в ОМВ ионы водорода поглощаются митохондриями, то силовой эффект в них минимальный, а в гликолитических МВ ионы водорода накапливаются, поэтому тут может иметь место положительный и отрицательный результат в росте силы. В связи с чем при рассмотрении реакции МВ на силовые упражнения надо брать во внимание активность именно ОМВ, ПМВ и ГМВ. Последовательность рекрутирования остаётся той же, то есть при усилении психического напряжения сначала рекрутируются ОМВ, потом подключаются ПМВ и далее ГМВ. Поскольку адаптационная реакция на силовое упражнение связана с наличием митохондрий в МВ, то лучше вести речь об ОМВ, о ПМВ и о ГМВ.

Для активации ГМВ необходимо выполнять упражнения с максимальной или с околомаксимальной интенсивностью. В этом случае, согласно "правилу размера" Ханнемана, начнут функционировать все МВ (ОМВ и ГМВ). Если же сокращение мышц будет сочетаться с расслаблением, то бишь с таким их функционированием, которое не вызывает остановки кровообращения, то воздействие упражнения окажется направленным в основном на ГМВ, поскольку в ОМВ митохондрии поглощают ионы водорода и превращают их в воду, и, следовательно, исчезает основной фактор, стимулирующий образование в клетке и-РНК.

Экспериментальное изучение метаболических процессов в отдельных клетках в настоящее время практически невозможно. После стандартного взятия пробы ткани (путём биопсии) последнюю размельчают и химическим путём измеряют концентрацию различных веществ. Эта процедура напоминает анекдот об измерении средней температуры по госпиталю, которая находится в пределах нормы — хотя один больной уже умер и остывает, а другой находится в лихорадке. Та же самая ситуация может иметь место и в мышечной ткани, а именно: одни мышечные волокна работают, а другие находятся в покое, и потому общий результат — средний.

Поэтому в настоящее время объективную информацию о процессах в отдельных типах МВ можно получить только с помощью математического моделирования. Если модель включает в себя мышечные волокна разного типа — ОМВ, ПМВ и ГМВ, то воспроизводится физиологический закон рекрутирования МВ (ДЕ), и исследователь может получить представление о биоэнергетических процесса в каждом отдельном мышечном волокне.

Ход краткосрочных биоэнергетических адаптационных процессов изучался с помощью математического имитационного моделирования (В.Н.Селуянов, 1990, 1996). Исследовалась реакция модели на упражнения с И = 85%, длительность одного приседания — 5 сек., интервал отдыха — 5 сек., количество повторений — до отказа.

Результат таков. Модель смогла выполнить 4-5 повторений в одной серии. Запасы креатинфосфата снизились в мышце только до 60%. (Надо заметить, что этот результат хорошо согласуется с данными методики ядерного магнитного резонанса, что свидетельствует, с одной стороны, о корректности моделирования, а с другой стороны, о наличии ложной информации в эксперименте, поскольку опять выдаётся информация в среднем по мышце. Моделирование показывает, что в ОМВ концентрация АТФ и КрФ снижается до уровня менее 30% от максимума.) Затем был задан период восстановления 3 мин. с активным отдыхом, обеспечивающим потребление кислорода 1-2 л/мин. За 3 мин. концентрация лактата в крови практически не изменилась, КрФ почти полностью ресинтезировался, однако максимальная мощность составила к этому моменту только 70% МАМ. Продление активного отдыха до 6 мин. позволило увеличить мощность до 75%, а при активном отдыхе длительностью 10 мин. мощность выросла до 85%. К десятой минуте концентрации Н и La снизилась соответственно до 7,29 мМ/л и до 4,5 мМ/л. Максимальная концентрация этих веществ наблюдалась на 2-4-той минутах восстановления и составила 7,265 мМ/л и 6,9 мМ/л. Эти данные также подтверждают корректность работы математической модели.

Использование упражнений с интенсивностью 85% не приводит к значительному расщеплению КрФ — поскольку отказ происходит не в результате исчерпания запаса АТФ и КРФ, а в результате рекрутирования всех МВ. После этого выполнить следующий подъём снаряда без помощи инструктора-тренера невозможно. Но для повышения эффективности силовой тренировки нужно добиться максимальной концентрации свободного креатина в МВ. Поэтому для повышения эффективности силовой тренировки, направленной на гипертрофию МВ (на гиперплазию миофибрилл), необходимо увеличить число повторений в подходе, то есть уменьшить мощность упражнения (до 70%). Нужно особо отметить, что данный вывод согласуется с экспериментальными данными о методах гипертрофии мышц (см. монографии: В.М.Зациорский, 1970, Ю.Хартман, Х.Тюнненман, 1988), а это свидетельствует об адекватности имитации, об адекватности модели.

Эксперимент с имитационным моделированием (ИМ) долговременных адаптационных процессов проводился по следующему плану. Интенсивность упражнения — 85%, продолжительность силовой тренировки изменялась — от 1 мин. до 20 мин., то есть спортсмен мог сделать 1-15 подходов к снаряду, интервал отдыха между тренировками — 1-7 дней. Реальный спортсмен мог бы затратить 100 лет на проверку всех возможных вариантов тренировки.

Результаты имитационного моделирования таковы. Было выяснено, как меняется масса миофибрилл за 20 циклов. Анализ результатов ИМ показывает, что увеличение количества дней отдыха приводит к снижению эффективности цикла тренировки при заданных интенсивности и продолжительности тренировки. Увеличение продолжительности тренировки с 1 мин. до 20 мин. (полезное время, когда образуется и-РНК) ведёт к росту эффективности цикла тренировки, однако при этом усиливается метаболизм гормонов. А при превышении скорости элиминации гормонов над скоростью их синтеза начинается снижение концентрации гормонов в теле. Снижение концентрации гормонов в теле ниже уровня нормы ведёт к возникновению явления общего адаптационного синдрома Селье (ОАСС), к снижению интенсивности процессов синтеза миофибрилл и митохондрий, а также клеток в органах эндокринной и иммунной систем. Последнее обстоятельство увеличивает вероятность заболевания. В ходе ИМ объект постоянно находится в среде, содержащей болезнетворные вирусы и микробы, которые инфицируют организм, поэтому при снижении иммунитета возрастает опасность заболевания. Следовательно, высокоинтенсивные и продолжительные тренировки могут существенно повышать синтез различных структур в клетках, однако одновременно с этим высокоинтенсивные и продолжительные тренировки являются причиной будущих заболеваний, явлений перетренированности. Такой вывод хорошо согласуется с общепринятым мнением специалистов и отражается в таких понятиях, как "форсирование спортивной формы" и "кумулятивный эффект".

ЖМ: Каким образом можно минимизировать отрицательный эффект и сохранить эффективность силовой тренировки?

ВС: Предлагаю следующий вариант построения недельного цикла. Предположим, что в первый день микроцикла выполняется развивающая тренировка — например, приседание со штангой весом 80-90% от произвольного максимума до отказа (упражнение длится 40-60 сек.). В ходе упражнения и в период 60 сек. восстановления в МВ должно идти активное образование и-РНК, следовательно, полезное время от одного подхода составляет 1,5-2 мин. Для достижения развивающего эффекта необходимо сделать 7-10 подходов, то есть 12-20 мин. полезной работы. Выполнение такой высокоинтенсивной и продолжительной работы вызывает значительный выброс гормонов в кровь. Повышенная концентрация гормонов сохраняется в мышечных волокнах в течение двух-трёх суток, что стимулирует общий синтез. На четвёртый день концентрация гормонов приходит к норме, поэтому необходимо выполнить ещё и силовую тренировку, но уже не столько для образования и-РНК, сколько для повышения концентрации гормонов в крови на протяжении последующих двух суток восстановления. Это обеспечит поддержание интенсивности процессов синтеза миофибрилл после развивающей тренировки. Очевидно, что такая "тонизирующая" тренировка должна быть высокоинтенсивной (для выброса гормонов в кровь), но не продолжительной (половиной от "развивающей" тренировки), чтобы не вызвать усиленного метаболизма гормонов и структур, образующихся в клетке.

Имитационное моделирование такого варианта тренировки показало, что за 6 микроциклов масса миофибрилл выросла на 7%, масса митохондрий уменьшилась на 14%, масса желёз внутренней секреции сначала имела тенденцию к росту (10 дней), затем — к снижению, а к 42-му дню масса желёз пришла к норме.

Следовательно, предложенный микроцикл эффективен, однако не может использоваться дольше шести недель, поскольку в дальнейшем могут появиться признаки ОАСС.

ЖМ: А с чем связано такое уменьшение митохондриальной массы? Значит ли это, что для силовых видов спорта, требующих выносливости — в виду имеются, например, силовой экстрим, армрестлинг и народный жим — данный микроцикл не подходит?

ВС: Уменьшение массы митохондрий обусловлено их разрушением при выполнении силовой тренировки для ПМВ и для ГМВ, а также естественным процессом старения (механизм старения органелл связан с функционированием лизосом, которые постоянно разрушают в клетке какие-то органеллы, в том числе и митохондрии). Синтез митохондрий после силовой тренировки идёт слабо, поэтому для роста массы митохондрий в ПМВ и в ГМВ необходимо выполнять специальные интервальные скоростно-силовые тренировки.

ВС: Для достижения максимальной гипертрофии ГМВ как эффекта тренировки необходимо соблюсти ряд условий:

— упражнение выполняется с интенсивностью 70% ПМ;

— упражнение выполняется "до отказа", то есть до исчерпания запасов КрФ и образования высокой концентрации Кр;

— интервал отдыха — 5 мин. или 10 мин., затем идут 5 мин. активного отдыха, во время которого выполняются упражнения с мощностью АэП (ЧСС 100-120 уд/мин), что значительно ускоряет процесс "переработки" молочной кислоты. Затем идут 10 мин. относительно малоактивного отдыха, во время которого происходит ресинтез КрФ преимущественно в ходе анаэробного гликолиза с накоплением в ГМВ ионов Н и La;

— количество подходов за тренировку: 3-5 подходов с пассивным отдыхом, 10-15 подходов с активным отдыхом;

— количество тренировок в день: одна, две и более — в зависимости от интенсивности тренировок и от тренированности организма;

— количество тренировок в неделю: после предельной по продолжительности (объёму) тренировки следующая может повториться только через 7-10 дней. Именно столько времени требуется для синтеза миофибрилл в мышечных волокнах.

То бишь это классическая схема, хорошо известная ещё с 60-х годов прошлого века.

ЖМ: А какие факторы определяют выбор количества повторений в подходе для гиперплазии миофибрилл в ГМВ?

ВС: Как правило, у силовиков (культуристов, штангистов, силовых троеборцев и др.) очень много ГМВ (более 60%). Для понимания критериев выбора интенсивности и продолжительности выполнения силового упражнения необходимо представить себе мышцу в виде столбика с набором ОМВ (снизу), затем на них положены ПМВ, а сверху уложены ГМВ. Если выбрать исходную интенсивность 70% ПМ, то подъём снаряда будет выполняться 1-2 раза за счёт запаса АТФ. Далее мощность активных МВ падает, поэтому приходится рекрутировать дополнительные "свежие" МВ. Так продолжается до полного исчерпания запаса "свежих" МВ. После этого наступает отказ. Если активные МВ содержат много митохондрий, то такие МВ медленнее теряют силу, поскольку митохондрии поглощают ионы водорода. В связи с этим выносливые спортсмены (борцы) поднимают снаряд 70% ПМ более 10 раз, а тяжелоатлеты — менее 6 раз. Нужно особо заметить, что ОМВ, ПМВ и часть ГМВ — например, половина — будут функционировать от начала до конца упражнения, в то время как высокопороговые МВ (вторая часть ГМВ) сможет работать в течение значительно более короткого времени. Самые высокопороговые ГМВ работают не долее одного сокращения. Следовательно, свободный креатин, ионы водорода и гормоны будут накапливаться только в ПМВ и в первой половине ГМВ. Именно в них и пойдёт накопление и-РНК. В ОМВ гиперплазии МФ не станет происходить из-за наличия митохондрий. Оптимальная продолжительность упражнения для накопления свободного креатина и необходимой концентрации ионов водорода находится в пределах 30-40 сек. (10-12 подъёмов). Увеличение продолжительности упражнения приводит к излишнему накоплению ионов водорода, а уменьшение продолжительности — к недостатку свободного креатина и ионов водорода для полноценной активации процессов транскрипции генетической информации.

Для гипертрофии второй половины ГМВ необходимо использовать интенсивность в районе 85-95% ПМ. В этом случае через 2-4 подъёма окажутся рекрутированными уже все МВ, и даже небольшое снижение концентрации АТФ приведёт к отказу от продолжении серии. В мышечных волокнах тут создаётся малая концентрация свободного креатина и ионов водорода, поэтому реакция генетического аппарата должна быть слабой. Следовательно, для эффективной гиперплазии миофибрилл высокопороговых ДЕ необходимо выполнять большое число тренировок в день и в неделю. Экспериментально эффективность такого метода была доказана практической работой болгарского тренера Ивана Абаджиева. Его подопечные — участники сборной Болгарии по тяжёлой атлетике — тренировались по 6 раз в день с весами около 100% от соревновательной нагрузки (90% ПМ) и по 5 раз в неделю.

Выбор количества тренировок в день и в неделю определяется мощностью эндокринной системы. Экспериментально было показано, что после силовой тренировки имеется определённая реакция — повышается концентрация тестостерона и гормона роста. Повторение силовой тренировки через несколько (6-10) часов уже не даёт такой же реакции эндокринной системы. Концентрация гормонов во втором случае не достигает и 30% максимума после первой тренировки.

Таким образом, выбор количества тренировок в день и в неделю зависит от реакции эндокринной системы. О состоянии эндокринной системы тренер может судить по результатам "проходок" (тестирования). Если сила перестаёт расти или падает, то это означает, что эндокринная система не выдерживает нагрузок. Значит, тут требуется отдых для восстановления эндокринной системы. И, следовательно, точно определить количество тренировок в день и в неделю нельзя, процесс программирования должен быть строго индивидуальным и опираться на результаты регулярного тестирования физического состояния спортсмена.

Тренировка с большими весами позволяет совершенствовать навыки активации всех МВ в тяжелоатлетических упражнениях (что положительно влияет на технику, на результаты и на психические реакции, то есть на боязнь-небоязнь больших весов), а также поддерживать и даже увеличивать степень гиперплазии миофибрилл во всех ГМВ. В этом случае сила растёт без существенного изменения мышечной массы. Этот метод тренировки наиболее приемлем при подводке спортсмена к главным стартам сезона.

Существует ещё и третий вариант силовой подготовки, который широко распространён в среде силовиков. При нём упражнения выполняются с весом 80-90% ПМ, но не до отказа (3-4 повторения). Например, если у спортсмена максимум в приседании со штангой находится в районе 250-350 кг, то в этом случае любое нарушение техники может привести к травме. Как же быть? А выход есть: он заключается в приёме анаболических стероидов. Если упражнение сделано не до отказа и не приводит к выбросу собственных гормонов, то для усиления анаболизма надо принимать искусственные гормоны, то есть допинг. В этом случае удаётся создать все необходимые предпосылки для гиперплазии миофибрилл в активных ГМВ — гормоны, свободный креатин, оптимальная концентрация ионов водорода, аминокислоты (при правильном белковом питании).

ЖМ: Расскажите о так называемом "активном отдыхе" — это очень важная тема. Смысл его понятен: за 5 мин. работы медленными МВ тренируемой мышечной группы образовавшаяся в результате упражнения молочная кислота утилизируется. То есть расщепляется до углекислого газа и воды в митохондриях ОМВ. Естественно, у атлета, применяющего активный отдых и избавляющегося от молочной кислоты, падение результатов от подхода к подходу будет гораздо менее выражено, чем у атлета, использующего пассивный отдых, поскольку у последнего идёт накопление в мышцах молочной кислоты от подхода к подходу, что снижает его работоспособность. Вопрос заключается в практическом применении активного отдыха. Если спортсмен тренирует ноги, то понятно, что он может эти 5 минут активного отдыха крутить педали на велотренажёре с уровнем нагрузки ниже аэробного порога или же просто ходить по залу. А как "отдыхать" между подходами при жиме лёжа или при тренировке рук?

ВС: Молочная кислота выходит в кровь и может поступать в любые другие органы, где концентрация молочной кислоты будет меньше. Обычно это происходит в ОМВ активных мышц, поскольку там функционируют митохондрии. В связи с чем там создаётся большая разница в концентрациях молочной кислоты в крови и в ОМВ. Поэтому чем бОльшая масса ОМВ активна, тем быстрее устраняется молочная кислота из крови. Следовательно, после тренировки рук надо работать ногами, крутить педали велоэргометра или ходить.

Для ускорения выхода молочной кислоты в магистральные сосуды из мелких мышечных групп можно выполнять массаж и лёгкие локальные упражнения на мышцы с содержанием высокой концентрации молочной кислоты.

ЖМ: Можно ли применять методику гиперплазии миофибрилл в БМВ в оздоровительной физической культуре?

ВС: Ответ на этот вопрос, скорее всего, отрицательный. Если принять во внимание то, что у большинства взрослых людей имеются признаки атеросклероза, то можно считать противопоказанным применение упражнений, приводящих к повышению САД (систолического артериального давления), к натуживанию.

При выполнении силовых упражнений с околомаксимальной интенсивностью неизбежны задержки дыхания, натуживание и, как следствие, рост САД. У квалифицированных штангистов САД повышается ещё перед тренировкой до 150 мм.рт.ст., а при гипервентиляции с натуживанием САД увеличивается до 200 мм.рт.ст ("Спортивная физиология", 1986). В первую минуту после подъёма тяжести САД достигает 150-180 мм.рт.ст., тут возрастает среднее давление, а ДАД (диастолическое артериальное давление) может повышаться или снижаться (А.Н.Воробьёв, 1977). И мощный поток крови может сорвать склеротические бляшки. Они с током крови могут дойти до сосуда, просвет коего окажется слишком мал для их продвижения. Это вызовет закупорку сосуда, то есть образование тромба. В тканях, не получающих кислород, начнёт разворачиваться анаэробный гликолиз, в огромных количествах будут накапливаются ионы водорода, которые раскрывают поры в мембранах лизосом. Из лизосом начнут выходить в саркоплазму протеинкиназы — ферменты, разрушающие белок. Органеллы клеток начнут разрушаться, что приведёт к некрозу клеток. В отношении сердца такие события приводят к инфаркту миокарда.

Список сокращений:

АТФ — аденозинтрифосфорная кислота
АДФ — аденозиндифосфорная кислота
МПК — максимальное потребление кислорода
АнП — анаэробный порог
АэП — аэробный порог
МВ — мышечное волокно
ГМВ — гликолитическое мышечное волокно
ОМВ — окислительное мышечное волокно
ДНК — дезоксирибонуклеиновая кислота
КПД — коэффициент полезного действия
КрФ — креатинфосфат
Кр — креатин
Ф — неорганический фосфат
и-РНК — информационная рибонуклеиновая кислота
рН — кислотно-щелочное равновесие
La — лактат

Виктор Николаевич Селуянов (1946 г.р.) – выпускник Государственного центрального Ордена Ленина Института физической культуры (1970).
Директор научной лаборатории «Информационные технологии в спорте» Национального исследовательского университета Московского физико-технического института.
Профессор. Кандидат биологических наук (1979). Заслуженный работник Физической Культуры. Почетный работник Высшего профессионального образования. Специалист в области биомеханики, антропологии, физиологии, теории спорта и оздоровительной физической культуры. Автор многих научных изобретений и инновационных технологий, создатель оздоровительной системы Isoton©, основоположник нового направления в науке - спортивной адаптологии, руководитель магистерской программы «Физкультурно-оздоровительные технологии» РГУФКСМиТ. Лектор Академии тренерского мастерства Российского футбольного союза. Автор более 300 научных статей, учебных пособий и монографий, ряда образовательных программ. В настоящее время участвует в научном сопровождении национальной и зарубежных олимпийских и клубных команд по футболу, дзюдо, самбо, борьбе, горным лыжам, легкой атлетике, конькобежному спорту, хоккею на траве и другим видам спорта.

Железный Мир: Здравствуйте, Виктор Николаевич. Расскажите, как вы впервые пришли в спорт.
Виктор Селуянов: Спортом я начал заниматься, когда учился в строительном техникуме. Преподаватель физкультуры мне сказал, что я могу добиться успеха либо в тяжелой атлетике, либо в велосипедном спорте и предложил выбрать, что мне более по душе. Поскольку у меня были проблемы с сердцем — врожденный порок, я принял решение его укреплять и решил стать велосипедистом. Сердце правда меня не беспокоило, поскольку чувствовал себя не хуже всех остальных и занимался почти всеми видами спорта, доступными в техникуме — баскетболом, волейболом, лыжным спортом. В техникуме была хорошая команда велосипедистов,меня к ним пристроили,и с 15-и лет, я начал заниматься. Через год выполнил норматив 1-го спортивного разряда, потом КМС, а потом 5 лет никак не мог выполнить мастерский норматив. И не мог понять причину. Я окончил техникум и решил поступить в институт Физической Культуры, чтобы узнать как стать мастером спорта. Поступил на вечернее отделение, должен был работать после окончания техникума, и стал изучать спортивные науки, в надежде ответить себе на этот вопрос: КАК СТАТЬ МАСТЕРОМ СПОРТА? В итоге даже хотел перевестись с вечернего на дневное отделение и экстерном сдал 15 предметов. То есть, собственно, окончил институт Физической Культуры за 2 года. Во время обучения я усиленно тренировался и все-таки смог добиться своей цели. Высшее мое достижение было победа в многодневной велосипедной гонке в Подмосковье. Называлась эта гонка «Ленинское знамя». За эту победу я и получил заветное звание мастера спорта. Тем не менее, даже окончив институт и выполнив мастерский норматив, я так толком и не мог для себя объяснить, как стать мастером спорта и поэтому решил углубиться в эту проблему и попытаться досконально во все разобраться

ЖМ: Вы учились на кафедре велосипедного спорта?
Виктор Селуянов: Нет, вечернее отделение педагогический факультет. Пока учился сам занимался тренерской работой в техникуме и мои ребята- шоссейники прилично выступали. Выиграли Первенство России среди техникумов. Поработал еще пару лет, а потом возник конфликт с новым директором. Он сказал, что моим ребятам необходимо сдавать нормы ГТО за каких-то рабочих с фабрики. Я возмутился и отказался. На что он ответил: тогда увольняйся. И я уволился. Но сильно расстроен не был. Поскольку понимал, что если не заниматься наукой, то тренером нельзя быть. Кстати тренирующиеся у меня молодые спортсмены, все окончили ВУЗы, а у моих приятелей тренеров — всех ребят в тюрьму пересажали. Я считаю своим высшим тренерским и педагогическим достижением того времени то, что мои ребята стали нормальными людьми и не ушли в преступность.
Вернусь к своему рассказу. Итак, я решил заняться научной деятельностью. Услышал, что есть такой известный ученый В. М. Зациорский, что у него есть научная лаборатория, где как раз изучают проблемы спорта, и что там нужны люди, которые хотят заниматься спортивной наукой.

ЖМ: А какой год тогда шел?
Виктор Селуянов: 1972.. Мне было 26 лет. Пришел я в лабораторию, меня познакомили с В. М. Зациорским, с С. К. Сарсания, с заведующим кафедры теории и методике физического воспитания А. Д. Новиковым и меня взяли на кафедру технологом. А через год я стал инженером проблемной лаборатории и сдал кандидатские экзамены. Думал защищаться на педагогические науки, а мне в итоге поручили тему, которая к педагогике не имеет отношения. Я должен был определить, сколько весят части тела у человека и какими массо-инерционными характеристиками они обладают. А это сплошная биология. В итоге я шесть лет создавал радиоизотопную методику, для того чтобы определить что сколько весит у живого человека, и потом написал диссертацию и защитил ее в Московском Государственном Университете в институте антропологии. Эту работу до сих пор никто в мире не смог повторить, и наши данные являются уникальными. Единственное в мире исследование, проведенное на живых людях в рамках которого точно определено сколько весит кисть, предплечье плечо и другие 10 частей тела испытуемого человека

ЖМ: А сейчас в современной науке используют эти данные?
Виктор Селуянов: Да весь мир ссылается на Зациорского и Селуянова, и весь мир знает этих авторов с точки зрения биомеханики. Они пользуются либо нашими данными, либо данными полученными на трупах, но наши данные живые и в этом смысле более практичны.

ЖМ: Как дальше продолжался ваш путь по научному Олимпу?
Виктор Селуянов: Поскольку я работал в проблемной лаборатории, мне со временем стала интересна не только сама биомеханика, но и проблемы тренировки и проблемы управления тренировочным процессом. Но, не опираясь на педагогическую информацию, а основываясь на законах биологии. Пришлось углубляться и в физиологию, и в биоэнергетику мышечной деятельности. А это было удобно, потому что в нашей лаборатории была группа Н. Волкова, сотрудники которой прекрасно разбирались в биоэнергетике. Физиологию представлял замечательный специалист Я. М. Кос. Можно было находиться на переднем крае науки, интересуясь этими проблемами. Люди, работающие в нашей лаборатории, были передовыми учеными в мире.
Итак, я начал заниматься теорией и методикой опираясь на законы биологии. Я прекрасно понимал, что такое спортивная наука и как она должна развиваться. Для того чтобы понять какие функциональные изменения происходят в человеке в целом, надо этого человека смоделировать, а еще лучше сделать из него математическую модель, и потом, все процессы тренировки рассматривать, как взаимодействие между виртуальным компьютерным спортсменом и тренером который пытается его тренировать. Поэтому перед нами была поставлена такая уникальная задача, и мы ее решили в начале 90-х годов. Мы создали модель, которая имитирует срочные адаптационные процессы и модель которая имитирует долгосрочные адаптационные процессы в мышечной ткани. в сердечной ткани, в эндокринной системе и в иммунной системе. Все это было объединено в единое целое, и у нас появился виртуальный спортсмен, которого можно было тренировать. И эта работа привела к тому, что были написаны уже более 10 монографий, где этот подход уже был реализован. И не только эти математические модели, но и практические рекомендации которые вытекают из этих моделей. А эти практические рекомендации в корне противоречат общепринятым педагогическим воззрениям. Например, чтобы готовить специалиста в циклических видах спорта по общепринятой схеме, надо сначала выполнить некоторый огромный объем работы для того чтобы создать общую выносливость. А по нашим представлениям НИКАКОЙ ОБЩЕЙ ВЫНОСЛИВОСТИ НЕТ, и надо создать мышечный аппарат, в котором много миофибрилл, и тогда человек становится сильнее, а вокруг новых миофибрилл надо создать митохондрии и тогда человек становиться выносливее. И при этом обязательно проконтролировать, соответствует ли сердце новому мышечному аппарату.
Как только мы переключились на такой подход, у нас стали получаться очень хорошие результаты во многих видах спорта. Можно сказать, что первым нашим значимым результатом была победа наших футболистов на Олимпийских Играх 1988 г. Мы занимались физической подготовкой спортсменов. Далее хороший успех с футбольной командой Динамо Ставрополь. Эту команду за один сезон, даже за одну зиму, мы подняли с последнего места и довели до первого места. И эта команда не вышла в Высшую Лигу, потому что руководство запретило ей это сделать, мотивируя тем, что стадион в Ставрополе не готов для проведения турниров такого уровня, а средств для реконструкции его нет. Большой контакт был налажен с Гаджи Муслиевичем Гаджиевым. Думаю. мы оказали большую помощь этому тренеру при подготовке к Олимпийским Играм, где он был одним из тренеров сборной. И, когда он был тренером «Анжи», команда играла во второй лиге. За один сезон она перешла в первую, а в следующем году в Высшую Лигу и заняла там 4 место. К сожалению, после этого команда была распродана..

ЖМ: Насколько я знаю, основная ваша область деятельности связана со спортсменами циклических видов спорта. Велосипедистам, лыжникам и бегунам посвящено большинство ваших научных работ и публикаций. Как давно вы обратили внимание на силовые виды спорта и начали работать в этом направлении?
Виктор Селуянов: Силовые виды спорта меня всегда интересовали, особенно когда я в первый раз пришел в НИИ к Зациорскому. Там работал Л. М. Райсон, он был штангистом и мог досконально объяснить, как надо заниматься силовой подготовкой. Занимаясь по его рекомендациям, я за месяц увеличил присед со 140 кг до 180 кг.

ЖМ: За ОДИН месяц?
Виктор Селуянов: Да. И, самое удивительное, что у меня резко пошли в гору и результаты в велоспорте. К сожалению, в это же время другой наш специалист С. К. Сарсансия занимался исследованием допингов, в том числе и анаболических стероидов и получал впечатляющие результаты. Я у него проконсультировался и решил попробовать. Купил в аптеке пачку нерабола (метандиенона) и принимал в течении месяца по 1 таб. Через месяц были соревнования и результат был очень плохой. Вообще не мог ехать. Приехал домой, проверяю, у меня же есть критерий — обхват бедра. Измеряю — был 62 см почти, а стал 58 см.

ЖМ: Вы что, сидели на жесткой безбелковой диете?!
Виктор Селуянов: Да, поскольку зарплата была маленькая, я ел только картошку и макароны. Ну и маленький кусочек колбасы. Оказывается, я нарушил баланс анаболических гормонов. На своих собственных я еще как-то держался, а вот когда добавились чужие, получилось, что я начал есть сам себя. Аминокислот для синтеза белка не хватило. Сердце было в прекрасном состоянии, мозг тоже, а мышцы исчезли. И восстановился только через месяц после прекращения приема анаболиков.
С этого времени интерес к силовым тренировкам особенно вырос, потому что они дали классный результат в прогрессе на велосипедной гонке, а прием фармакологии тоже дал тоже классный и очень показательный,правда отрицательный результат который четко показал, что при приеме гормонов из вне крайне важно правильное питание, и этим не в коем случае нельзя пренебрегать!
Сейчас у нас существует такая тенденция — в любом виде спорта поиск всех дальнейших направлений строится через силовую подготовку. Поэтому мы тщательно разрабатываем эти новые подходы, связанные с силовой подготовкой. Они включают в себя как уже известные методики, связанные с тренировкой ГМВ, так и варианты тренировок ОМВ, которые мы сами изобрели на базе нашей лаборатории. И экспериментально проверили, и отразили в ряде кандидатских диссертациях, доказав, что это реально работает.

ЖМ: Часто ли к вам обращались за помощью спортсмены силовых видов спорта? Кто из них смог добиться в дальнейшем достойных результатов?
Виктор Селуянов: Во время работы в РГАФКе ко мне приходили студенты с кафедры тяжелой атлетики. Двое из них попытались тренироваться с новыми установками, которые им были предложены. В результате один стал мастером спорта, второй стал показывать выдающиеся достижения в пауэрлифтинге. Оба они написали дипломные работы, потом поступили в магистратуру. Штангист, добившись звания мастера спорта не стал стремиться в большой спорт. А пауэрлифтер – Александр Грачёв — стал 2-м чемпионом мира по версии WPC. При этом он использовал наши разработки методического характера для того чтобы оптимизировать тренировочный процесс.
По нашим программам занимались дзюдоисты: чемпионы мира 2001 -Макаров, А. Михайлин, бронзовый призер олимпийских игр 2004 -Д. Носов; заслуженные мастера спорта по самбо Д.Максимов, Мартынов, Р.Сазонов; мсмк по армспорту А. Антонов. Можно отметить чемпиона мира среди юниоров Георгия Фунтикова. Он приходил к нам консультации, когда успешно выступал еще как спортсмен, и разрабатывал собственные тренировочные программы на базе наших разработок в период своей тренерской деятельности.

ЖМ: Много ли было защищено кандидатских диссертаций вашими последователями?
Виктор Селуянов: По нашей проблематике около 10. Одна женщина сейчас защищает докторскую по лыжному спорту. Она паралимпийская чемпионка среди ветеранов. Кстати у нас очень много чемпионов ветеранов. Им особенно нравятся наши подходы в организации тренировочного процесса, потому что тренироваться много не надо, а результаты получаются очень хорошие.

ЖМ: Расскажите про свою нынешнюю работу.
Виктор Селуянов: Основное место работы МФТИ НУЛ «Информационные технологии в спорте». И мы пытаемся сейчас активно привлекать студентов нашего ВУЗа для разработки математических моделей. которые бы описывали поведение организма человека в тренировочных и соревновательных условиях. Параллельно, у нас есть лаборатория, в которой мы проводим тестирование спортсменов в различных видах спорта, что бы оценить уровень их формы и дать направление тренировочной работе. Сейчас мы следим более чем за 100 спортсменами на уровне национальной сборной и помогаем им добиваться результатов без вреда для здоровья.

ЖМ: Расскажите об оборудовании, которое применяется в вашей лаборатории.
Виктор Селуянов: Оборудование стандартное. Как и во всем мире. Велоэргометры для оценки функциональных возможностей мышц нижних и верхних конечностей. Есть у нас электромиографы, есть силоизмерительные установки. Есть установки для оценки координационных возможностей спортсменов, на основе стабилоплотформы. В настоящее время начинаем разрабатывать методы и способы исследований движений человека. Для этого у нас есть соответствующая биомеханическая аппаратура. Для ананлиза функциональных возможностей человека есть хорошая достаточно дорогая аппаратура типа газоанализаторов, приборов для измерения концентрации лактата и сейчас появились биохимические аппараты, с помощью которых можно оценить состояние крови спортсменов во время тренировок и соревнований.
Мы расширяем свой ассортимент и продолжаем проводить научные исследования используя собранный нами статистический материал.

ЖМ: Спасибо за интервью, Виктор Николаевич. Мы надеемся, что вы и дальше будете удивлять научный мир своими новыми уникальными разработками, а наши спортсмены, используя их будут занимать первые места на соревнованиях любого уровня!

Виктор Николаевич, хотелось бы начать разговор с основных понятий, необходимых нам для понимания биологических процессов в мышце.

Начнем с клетки. Мышечная клетка, или как ее еще называют, мышечное волокно представляет собой большую клетку имеющую форму удлиненного цилиндра и по длине чаще всего соответствующей длине целой мышцы и диаметром от 12 до 100 мкм. Группы мышечных волокон образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани, переходящей на концах мышцы в сухожилия, крепящиеся к кости.
Сократительным аппаратом мышечного волокна являются специальные органеллы - миофибриллы , которые у всех живот­ных имеют примерно равное поперечное сечение, колеблющееся от 0,5 до 2 мкм. Число миофибрилл в волокне достигает двух тысяч. Состоят миофибриллы из последовательно соединенных саркомеров, каждый из которых включает нити (миофиламенты) актина и миозина. Миозин крепится к ЗЕТ пластинкам титином. При растяжении мышцы титин растягивается и может порваться, что приводит к разрушению миофибриллы, усилению катаболизма. Между филаментами актина и миозина могут образовываться мостики и при затрате энергии, заключенной в АТФ, может происходить поворот мостиков, т.е. сокращение миофибриллы, сокраще­ние мышечного волокна, сокращение мышцы и разрыв его. Основная энергия молекул АТФ тратится именно на разрыв мостиков. Мостики образуются в присутствии в саркоплазме ионов кальция. Увеличение количества миофибрилл (гиперплазия) в мышечном волокне приводит к увеличению поперечного сечения (гипертрофии), а, следовательно, силы и скорости сокращения при преодолении существенной внешней нагрузки. Удельная сила, приходящаяся на поперечное сечение мышечных волокон у всех людей примерно одинаковая, будь - то старушка или суперпаурлифтер.
Кроме миофибрилл огромное значение для нас имеют такие органеллы как митохондрии , энергетические станции клетки, в которых с помощью кислорода идет превращение жиров или глюкозы в углекислый газ (СО2), воду и энергию, заключен­ную в молекулах АТФ. Для увеличения мышечной массы и силы нам необходимо увеличивать количество миофибрилл в мышечных волокнах, а для увеличения выносливости – количество в них митохондрий.

Как на практике определить мышечную композицию?

Международный стандарт - берут кусочек мышечной ткани (как правило, из мышц бедра - наружной головки) и биохимическими методами определяют, сколько быстрых и сколько медленных волокон. Часть той же самой порции подвергают еще одному анализу, при котором определяют количество ферментов митохондрий.
В нашей лаборатории, еще под руководством Ю. В. Верхошанского, были разработаны опосредованные, косвенные, методы. Тестирование выполнялось на универсальном динамографическом стенде (УДС). Мы на нем определяли скорость нарастания силы, и оказалось, что она связана с количеством быстрых и медленных волокон. Потом такие же исследования выполнил Коми в Финляндии. Он нашел корреляционную зависимость между мышечной композицией (быстрые и медленные МВ) и крутизной нарастания силы. Но мы пошли дальше и разделили градиент силы на саму силу, то есть получили относительный показатель, который хорошо работает. Мало того, может быть, это более точный метод, чем биопсия, поскольку мы прямо измеряем скорость напряжения мышцы.
Мы, например, разделяем бегунов стайеров и бегунов на средние дистанции по этому показателю. У стайеров медленными мышцами являются как передние, так и мышцы задней поверхности бедра, а у бегунов на 800 м - мышцы передней поверхности бедра такие же медленные, а задние - быстрые, как у хороших спринтеров. Поэтому они быстро бегут 100 м с ходу, и именно эти мышечные волокна берегут до самого финиша. За 100–150 м до финиша они изменяют технику бега, сами спортсмены говорят, что они «переключают скорость» как в автомобиле.

Значит, если мы берем биопсию из четырехглавой мышцы бедра, то мы можем порой ошибаться? Соотношение волокон в разных мышцах неодинаково?

Совершенно верно. В последнее время накопилось много материалов, которые свидетельствуют, что если одна мышца медленная, скажем, прямая мышца бедра, то не обязательно, что и все остальные такие же. Интересно, что у спринтеров передняя поверхность бедра не быстрая и не медленная, а вот задней поверхности – быстрая и, тем более, икроножная и камбаловидная, иначе быть не может, но биопсию все равно берут из боковой поверхности бедра и результаты, например, для спринта получаются некорректные - неинформативные.

А по вашему методу?

По нашему методу все нормально. Для измерения силы и градиента силы нет ограничений, невозможно нанести вред мышцам, как это бывает при взятии биопсии. Для реализации нашего метода сейчас имеется в наличии изокинетический динамометр (БИОДЕКС). Измерения показали, что у спринтеров и передняя довольно быстрая и очень сильная, а задняя тем более. Если же взять прыгунов, то у них до 90% быстрых волокон в передней поверхности бедра - это главная для них мышца. Но в беге все-таки более важна задняя поверхность, она и рвется поэтому. Например, при обследовании сборной команды горнолыжников мы нашли только двух одаренных спортсменов (очень сильных и быстрых), которые и сейчас продолжают успешно выступать в Российских соревнованиях, а вот среди женщин не было ни одной, поэтому и нет успехов на международной арене. Никакие иностранные тренеры не помогут таким спортсменкам.

На этом мы завершим первую нашу беседу с Виктором Николаевичем. В следующем номере журнала мы подробно поговорим о методах гиперплазии миофибрилл в мышечных волокнах и особенно подробно об этом процессе в гликолитических мышечных волокнах.

Список сокращений
АТФ – аденозинтрифосфорная кислота
АДФ – аденозиндифосфорная кислота
МПК – максимальное потребление кислорода
АнП – анаэробный порог
АэП – аэробный порог
МВ – мышечное волокно
ГМВ – гликолитическое мышечное волокно
ОМВ – окислительное мышечное волокно
ДНК – дезоксирибонуклеиновая кислота
КПД – коэффициент полезного действия
КрФ – креатин фосфат
Кр – креатин
Ф – неорганический фосфат

То есть при тренировках на выносливость дополнительный прием препаратов креатина не целесообразен? А с чем это связано? Ведь производители спортивного питания всегда подчеркивают рост выносливости при приеме препаратов этой группы.

Это поспешный вывод. Оценка аэробных возможностей проводилась по МПК (максимальному потреблению кислорода). Это способ порочный – МПК зависит, от массы активных митохондрий в работающих мышцах, дыхательной мускулатуре и миокарде. Для оценки потребления кислорода активными мышцами надо определять потребление кислорода на уровне анаэробного порога. На самом деле КрФ является челноком, транспортирующим энергию от митохондрий к миофибриллам, поэтому повышение концентрации КрФ в МВ, после приема креатинмоногидрата, существенно повышает работоспособность спортсменов на всех режимах работы, а именно, от спринта до стайерского бега.

В предыдущих наших статьях мы рассмотрели методы гиперплазии миофибрилл в мышечных волокнах в целом, и более подробно разобрали методы гиперплазии в гликолитических волокнах. Сегодня мы поговорим о гиперплазии миофибрилл в окислительных волокнах. В литературе эта тема практически не раскрыта. Существует мнение, что мышечные объемы и рост силы дает только гипертрофия быстрых мышечных волокон. А роль медленных волокон настолько ничтожна, что ей можно пренебречь. Поэтому в силовых и скоростно-силовых видах спорта силовая тренировка медленных мышечных волокон не рассматривалась. Насколько это соответствует действительности, мы узнаем в очередной нашей беседе с профессором Виктором Николаевичем Селуяновым.

ЖМ: А есть ли необходимость отдельно тренировать ММВ? Они имеют порог возбудимости ниже, чем у БМВ, соответственно всегда включаются в работу вместе с ними. Если мы будем проводить тренировку, направленную на гипертрофию БМВ, описанную в предыдущем номере журнала, то ММВ получат свою долю нагрузки.

ВС: Это правильно, при тренировке БМВ обязательно функционируют и ММВ. Однако, во время выполнения силового упражнения с чередованием сокращения и расслабления мышц в ОМВ не накапливаются ионы водорода, поскольку митохондрии их поглощают и преобразуют в воду. Отсутствие этого фактора тормозит проникновение анаболических гормонов в ММВ (ОМВ), поэтому при классической силовой тренировке не наблюдается существенной гипертрофии ММВ. Для того, чтобы убедиться в этом, надо открыть учебник «Физиология мышечной деятельности» (под ред. Я.М.Коца). Там есть таблица, из которой видно, что, по данным разных авторов, обычная силовая тренировка – для ГМВ, не дает существенного прироста гипертрофии ММВ (1тип)

ЖМ: Значит ли это, что представители силовых видов спорта, например пауэрлифтеры, не использующие в своих тренировках методику гиперплазии миофибрилл в ОМВ, имеют неиспользованный резерв в развитии силы? И включив данную методику в свои тренировки, гарантированно увеличат свои силовые результаты?

ВС: В тех видах спорта, где собственный вес не учитывается, например, в бодибилдинге, выгодно увеличивать силу, набирать массу за счет ОМВ (ММВ). В этом случае спортсмен работает с непредельными весами, поэтому минимизируется травматизм. Выгодно увеличивать силу ММВ (ОМВ) в армреслинге, поскольку рост массы мышц рук идет, но его можно компенсировать снижением массы тела за счет жира или массы мышц ног. Одновременно с ростом силы ОМВ (ММВ) идет рост массы митохондрий, увеличивается локальная мышечная выносливость, а это очень важно для армреслинга и для любых других видов единоборств.

В пауэрлифтинге при выполнении приседа или тяги штанги выгодно использовать резерв увеличения силы тяги ОМВ (ММВ), поскольку они ничем не хуже БМВ (скорость сокращения мышц очень низкая). Выгодно, потому, что вес отягощения составляет 40-60% от ПМ, поэтому нет условий для получения травм и можно работать до отказа, т.е. до сильного стресса, выделения в кровь собственных анаболических гормонов (частичная замена приему ААС).

ЖМ: Как быстро после таких тренировок происходит гипертрофия ОМВ (ММВ)?

ВС: Нужно учитывать, что медленные волокна могут занимать всего треть мышцы, а поперечник медленных мышечных волокон, как правило, на 30-40% процентов меньше быстрых. Поэтому это происходит сначала незаметно, так как растет плотность миофибрилл, за счет появления новых, потом растет и поперечник МВ, когда вокруг новых миофибрилл появляются митохондрии. Но митохондрии занимают всего 10% общего объема мышцы. Основной рост - за счет миофибрилл. Экспериментально показано, что при правильно организованной тренировки происходит рост силы на 2% за тренировку. Надо заметить, что более одной развивающей тренировки в неделю выполнять нельзя, поскольку при более частых тренировках рост силы тормозится.

ЖМ: Допустимо ли при такой тренировке, чтобы отказ возникал не из-за болевых ощущениях в мышце, а, как и при тренировки ГМВ, из-за мышечного отказа? Например, спортсмен сделал 3 подхода по 30 сек с интервалом отдыха 30 сек упражнение жим штанги лежа по ограниченной траектории движения, и в последнем подходе на 29-й секунде произошел мышечный отказ, штанга поползла вниз, поскольку даже удержать ее в статическом положении спортсмен ее уже не мог. При этом мышечная боль была умеренной. Будет ли такая тренировка направлена на гиперплазию ОМВ, или рекомендуется снизить вес штанги и делать, например, 3 по 40 секунд, что бы причиной отказа все-таки стало сильное жжение в мышце?

ВС: При выполнении силовых упражнений надо считать не количество подъемов, не тонны – это формальные критерии. В каждом подходе надо вызывать в организме определенный физиологические и биохимические процессы, о содержании которых спортсмен может догадываться по ощущениям. При тренировке ОМВ правильное ощущение боль в активной мышце, которая наступает в результате накопления ионов водорода в них. Это главное условие для активизации синтеза белка. Вместе с болью появляется стресс и выход анаболических гормонов в кровь. В достоверности этой информации можно убедиться по публикациям ИМБП в журнале Физиология человека (рук. Д.б.н. Виноградова О.Л.). В данном примере, а именно, в работе продолжительностью 3 х 30 сек. с мышечным отказом, вес снаряда завышен, поэтому рекрутируются не только ОМВ, но и ПМВ, и часть ГМВ. Такой вариант тоже имеет право на существование, только эффект роста силы ОМВ будет несколько меньше

ЖМ: Но все равно слишком большой разброс времени выполнения упражнения – от 30 до 60 сек. в подходе. Поэтому возникает следующий вопрос: если в указанном примере спортсмен достигает мышечного отказа при 30 сек. работы в третьем подходе, то какой временной отрезок ему выбрать? Ведь он может подобрать вес до ощущения сильного жжения выполняя и 3 х 45 сек., и еще снизив вес 3 х 60 сек..

ВС: Критерием корректного выполнения упражнения является накопление в ОМВ молочной кислоты в оптимальной концентрации (10-15мМ/л), в крови будет меньше. Это возможно при статодинамическом режиме работы мышц и ограничении продолжительности выполнения упражнения. Эксперименты показывают, что оптимальная продолжительность стато-динамического режима находится в пределах 30-60с и если в это время спортсмен испытывает сильный стресс из-за болевых ощущений, то условия для роста силы ОМВ достигнуты. Поскольку ионы водорода могут усиливать катаболизм, то необходимо стремиться к более раннему возникновению боли в мышцах, т.е. ближе к 30с.

ЖМ: В You-Tube есть ролики, где вы проводите семинар с борцами. Там вы всячески предостерегаете спортсменов от чрезмерного закисления, так как оно ведет к разрушению митохондрий. Если спортсмен регулярно тренируется по Вашей методике и работает до отказа из-за сильнейшего жжения в мышцах на сожжёт ли он все свои митохондрии?

ВС: Ранее эту проблему мы уже обсуждали, здесь сделаем акцент на том, что в разных типах МВ ионы водорода вызывают специфическую реакцию. Действие ионов водорода (Н) обусловлено концентрацией и длительностью присутствия в МВ. В ОМВ, даже при наличии высокой концентрации ионов водорода, в период отдыха митохондрии быстро устраняют их, поэтому повредить митохондрии и другие структуры МВ ионы водорода не успевают. Об этом говорят величины креатифосфокиназы и кортизола в крови после тренировки. Эти величины, как правило, в 2-3 раза ниже по сравнению с обычными силовыми упражнениями. В ГМВ после классической силовой тренировки (динамической с интенсивностью 70-80%ПМ) ионы водорода не поглощаются митохондриями (их слишком мало), ионы Н соединяются с лактатом и молочная кислота медленно выходят в кровь 10-60 мин. Активный отдых ускоряет выход молочной кислоты в кровь. Поэтому митохондрии и другие структуры подвергаются длительному разрушающему влиянию. Поэтому борцам нельзя тренироваться с сильным закислением, надо беречь митохондрии в ГМВ, от них зависит локальная мышечная выносливость борца.

ЖМ: Приведите пример тренировочного цикла.

ВС: Результаты имитационного моделирования показали, что одним из рациональных вариантов тренировки является цикл, в котором одна тренировка носит развивающий характер, через три дня силовая тренировка повторяется, но уже в меньшем объеме ("тонизирующая" тренировка), всего цикл составил семь дней. Одним из достоинств такого цикла является то, что он может использоваться специалистами видов спорта на "выносливость". В дни отдыха могут использоваться тренировки для развития в МВ митохондрий или тренировки миокарда, диафрагмы. Эффективность теоретически разработанного микроцикла была проверена в ходе педагогического эксперимента.

Методика. Семь студентов ИФК (длина тела 177,3±11,8 см; масса тела 71,7±9,7 кг; возраст 25,0±4,8 г) два раза в неделю, в течение шести недель выполняли силовые тренировки и два раза в неделю выполняли аэробные тренировки по 40-50 мин с ЧСС АэП.

Первая силовая тренировка включала три серии по три подхода в каждой. Отдых между сериями был активный - 12 мин, между подходами 30 с. В каждом подходе упражнение выполнялось до отказа, длительность приседания со штангой составляла 60-70 с. Приседание выполнялось в статодинамическом режиме.

Вторая силовая тренировка включала только четыре подхода с интервалом активного отдыха 8 мин, вес штанги и условия приседания были теми же, что и в первой тренировке.

Результаты. За период исследования испытуемые стали сильнее, они смогли поднять более тяжелую штангу: до 866±276 Н, после эксперимента 1088±320 Н (различия достоверны при р<0,001). Средний прирост силы составил 222 Н (25,6%) или 2,1%/тр.день. Последний показатель должен характеризовать эффективность силовой тренировки, с его помощью можно сравнивать различные методы. В обзорной работе М.McDonagh and С.Davies (1984) было проведено сравнение изотонического и изометрического методов силовой тренировки в различных вариантах, в частности, было показано, что изотоническая тренировка дает прирост силы 0,4-1,1% за один тренировочный день, изометрическая - 0,9-1,1% за тренировочный день. Другие исследователи добивались лучших показателей 2-3%, однако они использовали примерно такую же методику: интенсивность 80%; количество сокращений мышцы за тренировку 12-18; 21-24 тренировочных дня.

Таким образом, эффективность разработанной методики силовой тренировки выше изометрических методов и изотонических, за исключением тех, которые по технологии совпадают с разработанной здесь. Следовательно, модель адекватно имитирует процессы синтеза миофибрилл как результат силовой тренировки.

ЖМ: А с чем связано такое уменьшение митохондриальной массы? Значит ли это, что в силовых видах спорта требующих выносливости – силовой экстрим, армрестлинг, народный жим – данный микроцикл не подходит?

ВС: Уменьшение массы митохондрий обусловлено их разрушением при выполнении силовой тренировки в ПМВ и ГМВ, а также естественным процессом старения (механизм старения органелл связан с функционированием лизосом, которые постоянно разрушают в клетке какие-то органеллы, в том числе и митохондрии). Синтез митохондрий после силовой тренировки идет слабо, поэтому для роста массы митохондрий в ПМВ и ГМВ необходимо выполнять специальные интервальные скоростно-силовые тренировки.

ВС: Для достижения максимальной гипертрофии ГМВ эффекта тренировки необходимо соблюсти ряд условий:

Упражнение выполняется с интенсивностью 70% ПМ,

Упражнение выполняется "до отказа", то есть до исчерпания запасов КрФ, образования высокой концентра­ции Кр,

Интервал отдыха - 5 или 10 мин, 5 мин активный отдых, выполняются упражнения с мощностью АэП (ЧСС 100-120 уд/мин), это значительно ускоряет процесс "пере­работки" молочной кислоты, 10 мин относительно малоак­тивный отдых, ресинтез КрФ идет преимущественно в ходе анаэробного гликолиза с накоплением в ГМВ ионов Н и La,

Количество подходов за тренировку: 3-5 подхо­дов с пассивным отдыхом, 10 - 15 - с активным отдыхом,

Количество тренировок в день: одна, две и более, в зависимости от интенсивности и тренированности,

Количество тренировок в неделю: после предельной по продолжительности (объему) тренировки, следующая может повториться только через 7-10 дней, именно столько времени требуется для синтеза миофибрилл в мышечных волокнах.

Эта классическая схема, хорошо известная еще с 60-х годов прошлого века.

ЖМ: Давайте поговорим об «активном отдыхе», это очень важная тема. Смысл его понятен, за 5 мин работы медленными МВ тренируемой мышечной группы образовавшаяся в результате упражнения молочная кислота утилизируется. То есть расщепляется до углекислого газа и воды в митохондриях ОМВ. Естественно, у атлета применяющего активный отдых и избавляющегося от молочной кислоты падение результатов от подхода к подходу будет гораздо менее выражено, чем у атлета использующего пассивный отдых, поскольку у последнего идет накопление в мышцах молочной кислоты от подхода к подходу, что снижает его работоспособность. Вопрос в практическом применении. Если спортсмен тренирует ноги, понятно, он может эти 5 минут крутить педали на велотренажере с уровнем нагрузки ниже аэробного порога или просто ходить по залу. А как «отдыхать» между подходами при жиме лежа или тренировке рук?

ВС: Молочная кислота выходит в кровь и может поступать в любые другие органы, где концентрация молочной кислоты будет меньше. Обычно это бывает в ОМВ активных мышц, поскольку там функционируют митохондрии, поэтому создается большая разница в концентрациях молочной кислоты в крови и ОМВ. Поэтому, чем большая масса ОМВ активна, тем быстрее устраняется молочная кислота из крови. Следовательно, после тренировки рук, работать надо ногами, крутить педали велоэргометра или ходить.

Для ускорения выхода молочной кислоты в магистральные сосуды из мелких мышечных групп можно выполнять массаж и легкие локальные упражнения на мышцы с содержанием высокой концентрации молочной кислоты.

ЖМ: Можно ли применять методику гиперплазии миофиб­рилл в БМВ в оздорови­тель­ной физической культуре?

ВС: Ответ на этот вопрос в большинстве случаев отрицатель­ный . Если принять во внимание, что у большинства взрослых людей имеются признаки атеросклероза, то можно считать противопоказанным применение упражнений, приводящих к повышению САД, натуживанию.

При выполнении силовых упражнений с околомакси­мальной интенсивностью неизбежны задержки дыхания, натуживания и, как следствие, рост САД. У квалифици­рованных штангистов САД повышается еще перед трениров­кой до 150 мм.рт.ст., при гипервентиляции с натуживанием САД увеличивается до 200 мм.рт.ст (Спортивная физиология, 1986). В первую минуту после подъема тяжести САД достигает 150-180 мм.рт.ст., возрас­тает среднее давление, ДАД может повышаться или сни­жаться (А.Н.Воробьев, 1977). Мощный поток крови может сорвать склеротические бляшки. Они с током крови могут дойти до сосуда, размер которого окажется мал для ее движения. Это вызывает закупорку сосуда, образование тромба. В тканях, не получающих кислород, начинает разворачиваться анаэробный гликолиз, накапливаются в огромных количествах ионы водорода, которые раскрывают поры в мембранах лизосом. Из лизосом начинают выходить в саркоплазму протеинкиназы – ферменты, разрушающие белок. Органеллы клеток начинают разрушаться, наблюдается некроз клеток. В миокарде это событие приводит к инфаркту миокарда.

Виктор Селуянов. Тренировки по науке. Часть первая.

Сегодняшней публикацией мы открываем цикл бесед с профессором Виктором Николаевичем Селуяновым посвященный современным биологически обоснованным научным методам тренировок. Сразу скажу, что многие поклонники «железной игры» воспримут ряд положений в штыки. Слишком разительно отличаются научные методы от общепринятых в силовом мире положений, считающихся незыблемыми. С поразительной легкостью Виктор Николаевич разбивает устоявшиеся стереотипы, но делает это с убийственной логикой, основанной на глубоких знаниях анатомии, физиологии и биохимии. Поэтому не спешите бросать чтение, и возвращаться к трудам практиков. Поверьте, наука, особенно, если она использует для вывода положений умозрительные и математические модели, смотрит в «корень», объясняет причины явлений. Вот только связь передовой науки и практики пока оставляет желать лучшего. Переиздаются давно морально устаревшие учебники теории и методики физической культуры и спорта. Труды Матвеева, Зациорского, Верхошанского, грешат эмпирическим подходом, поэтому содержат формально-логические рекомендации без биологического обоснования. И это не вина авторов, на момент написания ими своих трудов не было такого объема биологической информации, методов исследования, технического оборудования, как сейчас, и им приходилось додумывать, выдвигать гипотезы, которые потом перешли в разряд устоявшихся положений, хотя изначально они не были обоснованы теоретически. И эти некорректные обобщения переписываются из учебника в учебник на протяжении более полувека, а современные научные биологические исследования так и остаются в узкоспециализированных научных изданиях и не выходят не только на массового читателя, но даже на издателей книг по спортивным темам. И пропасть между теорией – биологическими науками, и практикой продолжает увеличиваться. Сегодня мы начнем с азов. Мы не будем детально изучать строение, биологию и биохимию клетки, но ряд основных положений нам надо разобрать, чтобы понимать, какие процессы происходят в мышцах под воздействием различных тренировок. Надо построить модели систем и органов человека и на этой основе описывать и предсказывать адаптационные процессы. Итак, начнем…