Гладкие мышцы. Лекция физиология мышечной ткани Особенности иннервации гладких мышц физиология

Гладкие мышцы содержат актиновые и миозиновые нити, имеющие химические характеристики, подобные актиновым и миозиновым нитям скелетных мышц. Но в гладких мышцах нет тропонинового комплекса, необходимого для запуска сокращения скелетной мышцы, следовательно, механизм инициации сокращения в них другой. Этот механизм подробно обсуждается далее в нашей статье.

Химические исследования показали, что актиновые и миозиновые нити , извлеченные из гладких мышц, взаимодействуют друг с другом во многом так же, как и в скелетной мышце. Более того, процесс сокращения активируется ионами кальция, а энергия для сокращения обеспечивается разрушением АТФ до АДФ.

Существуют, однако, значительные различия в морфологической организации гладких и скелетных мышц , а также в сопряжении возбуждения и сокращения, механизме запуска ионами кальция сократительного процесса, длительности сокращения и количестве энергии, необходимой для сокращения.

Морфологическая основа сокращения гладких мышц

Гладкие мышцы не имеют такой упорядоченной организации актиновых и миозиновых нитей, которая обнаруживается в скелетных мышцах, придавая им «полосатость». С помощью техники электронной микрофотографии выявляется гистологическая организация. Видно большое число актиновых нитей, прикрепленных к так называемым плотным тельцам. Некоторые из этих телец прикрепляются к клеточной мембране, другие распределяются внутри клетки. Некоторые из мембранных плотных телец соседних клеток связываются вместе мостиками из внутриклеточных белков. Через эти мостики в основном передается сила сокращения от одной клетки к другой.

В мышечном волокне среди актиновых нитей разбросаны миозиновые нити. Их диаметр более чем в 2 раза превышает диаметр актиновых нитей. На электронных микрофотографиях актиновых нитей обычно обнаруживают в 5-10 раз больше, чем миозиновых.

На рисунке представлена предполагаемая структура отдельной сократительной единицы внутри гладкомышечной клетки , где видно большое число актиновых нитей, исходящих от двух плотных телец; концы этих нитей перекрывают миозиновую нить, расположенную посередине между плотными тельцами. Эта сократительная единица похожа на сократительную единицу скелетной мышцы, но без специфической регулярности ее структуры. В сущности, плотные тельца гладкой мышцы играют ту же роль, что и Z-диски в скелетной мышце.

Существует и другое различие. Большинство миозиновых нитей имеют поперечные мостики с так называемой боковой полярностью. Мостики организованы следующим образом: на одной стороне они шарнирно фиксируются в одном направлении, а на другой - в противоположном направлении. Это позволяет миозину тянуть актиновую нить с одной стороны в одном направлении, одновременно продвигая с другой стороны другую актиновую нить в противоположном направлении. Такая организация позволяет гладкомышечным клеткам сокращаться с укорочением до 80% их длины вместо укорочения менее чем на 30%, характерного для скелетной мышцы.

Большинство скелетных мышц сокращаются и расслабляются быстро, но сокращения гладких мышц в основном являются длительными тоническими сокращениями, которые иногда продолжаются в течение нескольких часов или даже дней. Следовательно, можно ожидать, что морфологические и химические особенности гладких мышц должны отличаться от соответствующих характеристик скелетных мышц. Далее обсуждаются некоторые из этих отличий.

Медленная циклическая активность миозиновых поперечных мостиков . В гладкой мышце по сравнению соскелетной гораздо меньше скорость циклической активности миозиновых поперечных мостиков, т.е. скорость их прикрепления к актину, отсоединение от актина и повторное прикрепление для осуществления следующего цикла. Фактически частота циклов составляет лишь от 1/10 до 1/300 этого показателя в скелетной мышце. Однако, как считают, в гладкой мышце значительно больше относительное количество времени, в течение которого поперечные мостики остаются прикрепленными к актиновым нитям, что является главным фактором, определяющим силу сокращения. Возможной причиной медленного циклирования является гораздо меньшая по сравнению со скелетной мышцей АТФ-азная активность головок поперечных мостиков, в связи с чем скорость разрушения АТФ - источника энергии для движения головок поперечных мостиков - значительно снижена с соответствующим замедлением скорости их циклов.

По структуре гладкая мышца отличается от поперечнополосатой скелетной мышцы и мышцы сердца. Она состоит из клеток длиной от 10 до 500 мкм, шириной 5-10 мкм, содержащих одно ядро.
Гладкая мышца играет важную роль в регуляции просвета воздухоносных путей, кровеносных сосудов, двигательной активности желудочно-кишечного тракта, матки и др.

Типы гладкой мышцы

Гладкие мышцы органов существенно отличаются друг от друга. Основные отличия заключаются в том, что они имеют различные размеры, организованы в пучки или пласты, по разному отвечают на раздражители, имеют разную иннервацию и функцию. Все же для простоты гладкие мышцы подразделяют, главным образом, на два типа: мультиунитарные и унитарные.
Мультиунитарная гладкая мышца. Этот тип гладкой мышцы состоит из отдельных гладкомышечных клеток, каждая из которых, находится независимо друг от друга. Мультиунитарная гладкая мышца имеет большую плотность иннервации. Как и поперечно-полосатые мышечные волокна, они снаружи покрыты веществом, напоминающим базальную мембрану, в состав которого входят, изолирующие клетки друг от друга, коллагеновые и гликопротеиновые волокна.
Существенной особенностью мультиунитарной гладкой мышцы является то, что каждая мышечная клетка может сокращаться отдельно и ее активность регулируется нервными импульсами. Мультиунитарные мышцы входят в состав цилиарной мышцы, мышц радужки глаза, мышцы поднимающей волос.
Унитарная гладкая мышца (висцеральная). Данный термин является не совсем правильным, так как обозначает не одиночные мышечные волокна. В действительности это сотни миллионов гладкомышечных клеток, сокращающихся как единое целое. Обычно висцеральная мышца представляет собой пласт или пучок, а сарколеммы отдельных миоцитов имеют множественные точки соприкосновения. Это позволяет возбуждению распространяться от одной клетки к другой. Более того, мембраны рядом расположенных клеток образуют множественные плотные контакты (gap junctions ), через которые ионы имеют возможность свободно передвигаться из одной клетки в другую. Таким образом, потенциал действия, возникающий на мембране гладкомышечной клетки, и ионные потоки могут распространяться по мышечному волокну, обеспечивая возможность одновременного сокращения большого количества отдельных клеток. Данный тип взаимодействия известен как функциональный синцитий. Подобный тип гладкой мышцы представлен в стенках большинства внутренних органов, включая кишечник, желчевыводящие протоки, мочеточник и большинство кровеносных сосудов.

Особенности электронномикроскопического строения гладкомышечных клеток

В гладкой мышцы отсутствуют саркомеры. Толстые и тонкие миофиламеты распределены по всей саркоплазме гладкого миоцита и не имеют такой стройной организации, как в поперечно-полосатой скелетной мышце. При этом тонкие филаменты прикрепляются к плотным тельцам. Некоторые из этих телец расположены на внутренней поверхноти сарколеммы, но большинство из них находятся в саркоплазмме. Плотные тельца состоят из альфа-актинина – белка обнаруженного в структуре Z-мембраны поперечнополосатых мышечных волокон. Некоторые из плотных телец расположенных на внутренней поверхности мембраны соприкасаются с плотными тельцами прилегающей клетки. Тем самым сила, создаваемая одной клеткой может передаваться следующей.
Толстые миофиламенты гладкой мышцы содержат миозин, а тонкие– актин, тропомиозин, кальдесмон, кальпонин, лейкотонин А и С. Однако в составе тонких миофиламентов не обнаружен тропонин.
В гладкомышечных клетках практически отсутствуют Т-трубочки. Кроме того, гладкомышечные клетки значительно меньше поперечнополосатых мышечных волокон и поэтому не имеют развитой системы Т-трубочек, предназначенных для проведения возбуждения к расположенному в глубине сократительному аппарату. Вместо них наблюдаются небольшие углубления в сарколемме, которые получили название кавеолы. Благодаря им увеличивается площадь поверхности миоцита, а также может обеспечиваться взаимосвязь потенциалов, возникающих на мембране и саркоплазматическим ретикулумом.

Особенности биопотенциалов гладкой мышцы

Потенциал покоя. Величина разности потенциалов на мембране гладкомышечных клеток существенно различается в зависимоти как от типа гладкой мышцы так и от тех условий, в которых она находится. Обычно в состоянии покоя мембранный потенциал гладкомышечной клетки нестабилен и находится в пределах от –30 до –50 мВ, что на 30 мВ меньше, чем в скелетной мышце.
Потенциал действия унитарной мышцы. Потенциал действия в унитарной (висцеральной) гладкой мышце возникает так же как и в скелетной мышце. В висцеральных гладких мышцах потенциал действия различается по форме, амплитуде и продолжительности. Он бывает (1) в виде спайка или (2) потенциал действия, имеющий плато. Типичный spike-потенциал, характерен для гладкой и скелетной мышцы. Его продолжительность от 10 до 50 мсек. Данный потенциал возникает при нанесении на гладкую мышцу электрического, химического раздражения, а также растяжения. Кроме того, потенциала действия подобного типа может возникать спонтанно. Потенциал действия, имеющий плато, своим началом напоминает spike-потенциал. Однако сразу после быстрой деполяризации начинается быстрая реполяризации. Однако она задерживается вплоть до 1000 мсек. Так формируется плато потенциала действия. Во время плато гладкая мышца длительное время остается укороченной. Подобный тип возбуждения имеет место в гладкой мышце мочевого пузыря, матки и др.
Необходимо отметить, что в мембране гладкомышечной клетки обнаружено гораздо большее количество потенциалзависимых кальциевых каналов, чем в мембране поперечнополосатых мышечных волокон. Более того, ионы натрия играют малую роль в гененерации потенциала действия. Вместо них большое значение в генерации потенциала действия принадлежит потоку ионов кальция внутрь гладкомышечной клетки. Однако кальциевые каналы открываются значительно медленее, чем натриевые каналы, но остаются открытыми значительно дольше. На основании этого можно понять почему потенциал действия гладкой мышцы развивается в течение столь длительного времени. Другой важной задачей входящего во время потенциала действия кальция является их прямое влияние на сократительный аппарат клетки.
Некоторые гладкомышечные клетки обладают способностью к самовозбуждению, то есть способны генерировать потенциал действия без воздействия внешнего раздражителя. Это часто связано с периодическими колебаниями мембранного потенциала. Очень часто подобная активность наблюдается в гладкой мышце кишечника. Медленные волновые колебания мембранного потенциала не являются потенциалом действия. Одним из возможных механизмов, объясняющих появление этих волновых колебаний мембранного потенциала, является периодическая активация и затухание активности натрий-калиевого насоса. Разность потенциалов на мембране гладкомышечной клетки увеличивается во время активации Na/K насоса и уменьшается при ее снижении. Другой возможной причиной данного явления является ритмическое увеличение или снижение проводимости ионных каналов.
Физиологическое значение медленных колебаний мембранного потенциала состоит в том, что они могут инициировать появление потенциала действия. Это возникает в том момент когда во время медленной волны разность потенциалов на мембране клетки снижается до –35 мВ. При этом, как правило, успевает возникнуть несколько потенциалов действия. Следовательно, медленные волны можно назвать пейсмекерными волнами и, таким образом, становится понятным каким образом они обуславливают ритмические сокращения кишки.
Одним из важных раздражителей, инициирующих сокращение гладких мышц, является их растяжение. Достаточное растяжение гладкой мышцы обычно сопровождается появлением потенциалов действия. Таким образом, появлению потенциалов действия при растяжении гладкой мышцы способствует два фактора: (1) медленные волновые колебания мембранного потенциала, на которые наслаивается (2) деполяризация, вызываемая растяжением гладкой мышцы. Данное свойство гладкой мышцы позволяет ей автоматически сокращаться при растяжении. Например, во время переполнения тонкого кишечника возникает перистальттическая волна, которая и продвигает содержимое.
Деполяризация мультиунитарной гладкой мышцы. В обычных условиях мультиунитарная гладкая мышца сокращается в ответ на поступление нервного импульса. Чаще всего из нервного окончания высвобождается ацетилхолин, в некоторых мультиунитарных мышцах, норадреналин или другой медиатор. В любом случае медиатор приводит к деполяризации мембраны гладкой мышцы и к последующему ее сокращению. Потенциал действия при этом не возникает. Причина данного явления в том, что мультиунитарные гладкомышечные клетки слишком малы для того чтобы генерировать потенциал действия. (Когда потенциал действия возникает на мембране висцеральной (унитарной) гладкой мышцы, то от 30 до 40 гладкомышечных клеток должны деполяризоваться одновременно до того момента, когда потенциал действия будет способен самостоятельно растпространяться вдоль мембраны гладкой мышцы. В мультиунитарной гладкой мышце не возникает потенциал действия, а локальная деполяризация, вызываемая высвобождением медиатора, способна к электроническому распространению.
Особенности актомиозинованого взаимодействия. В гладкой мышце движение актомиозиновых мостиков является более медленным процессом, по сравнению с поперечнополосатой мышцей. Однако время, в течение которого головки миозиновых молекул остаются прикрепленными к актину оказывается более длительным. Причиной столь медленного движения актомиозиновых мостиков гладкомышечных клеток является более низкая АТФ-азная активность головок их миозиновых молекул. Поэтому распад молекул АТФ и высвобождение энергии, необходимой для обеспечения движения актомиозиновых мостиков происходит не так быстро как в поперечнополосатой мышечной ткани. Это можно понять, если представить, что одна молекула АТФ необходима для одного движения актомиозинового мостика независимо от продолжительности данного движения. Экономичность энерготрат в гладкой мышце является чрезвычайно важным в общем потреблении организмом энергии, так как, кровеносные сосуды, тонкий кишечник, мочевой пузырь, желчный пузырь и другие внутренние органы постоянно находятся в тонусе.
Особенность электромеханического сопряжения. Продолжительность сокращения гладких мышц может варьировать от 0,2 до 30 сек. Сокращение типичной гладкой мышцы начинается спустя от 50 до 100 мсек после начала ее возбуждения, достигая своего максимума через 0,5 сек, а затем угасает в течение последующих 1-2 сек. Таким образом, продолжительность сокращения составляет 1-3 сек, что является в 30 раз более длительным, чем в поперечнополосатой мышце.
Возникновение сокращения в гладкомышечных клетках в ответ на увеличение внутриклеточной концентрации ионов кальция – электромеханическое сопряжение осуществляется гораздо медленнее, чем в поперечнополосатой мышце.
Механизм электромеханического сопряжения в гладкой мышце отличается от поперечнополосатой или сердечной мышцы. В гладкой мышце появление на сарколемме потенциала действия активирует фосфолипазу С и появление инозитол-3-фосфата, который связывается со специфическим для него рецептором, расположенным на кальциевом канале терминальной цистерны СПР. Это приводит к открытию этих каналов и выходу кальция из цистерны СПР.
Особенность силы сокращения и укорочения гладкой мышцы . Сила сокращения гладкой мышцы равна от 4 до 6 кг/см2 поперечного сечения гладкой мышцы. В тоже время поперечнополосатая мышца развивает силу от 3 до 4 кг/см2. Данный факт является следствием значительного времени взаимодействия актиновых и миозиновых филаментов.
Ещё одной особенностью гладкой мышцы является то, что она во время сокращения способна укорачиваться вплоть до 2/3 ее первоначальной длины (скелетная мышца от 1/4 до 1/3 длины). Это позволяет полым органам выполнять свою функцию - изменять свой просвет от в значительных пределах. Точный механизм данного явления не известен. Но подобное возможно благодаря двум причинам:
в гладкой мышце существует оптимальная площадь соприкосновения актиновых и миозиновых нитей;
длина актиновых нитей в гладкой мышце гораздо больше, чем в поперечнополосатой. Поэтому взаимодействие актиновых и миозиновых нитей может происходить в них на гораздо более продолжительном расстоянии, чем это имеет место при сокращении поперечнополосатой мышцы.
Стресс-релаксация гладкой мышцы. Еще одной важной особенностью висцеральной гладкой мышцы многих полых органов является ее способность возвращаться к первоначальной силе сокращения спустя секунды или минуты после того, как она была растянута или сокращена. Например, внезапное увеличение объёма жидкости в полости мочевого пузыря сопровождается растяжением гладкой мышцы его стенки, что обязательно приводит к увеличению внутрипузырного давления. Однако в последующие от 15 сек до нескольких минут, несмотря на постоянно действующую растягивающую силу внутрипузырное давление возвращается к почти исходному значению.

Механизм сокращения гладких мышц

Несмотря на то, что скелетные мышечные волокна сокращаются быстро, для большинства гладких мышц характерно длительное тоническое сокращение, иногда достигающее часов или даже дней. Можно предположить, что механизм сокращения гладкой мышцы отличается от поперечнополосатой мышцы. Подобно скелетной мышце для начала мышечного сокращения гладкомышечных волокон необходимы ионы кальция. Увеличение внутриклеточной концентрации ионов кальция может происходить при раздражении нервных волокон, под влиянием гормонов, растяжения гладкой мышцы или даже в результате изменения химического окружения мышечного волокна.
В гладкой мышце движение поперечных актомиозиновых мостиков, лежащее в основе сокращения, начинается благодаря кальций-зависимому процессу фосфорилирования головок миозиновых молекул.
Миозиновые молекулы содержат 4 легкие цепи, две из которых связаны с головкой молекулы миозина. Головка миозиновой молекулы присоединяется к актину только после того, как на ней фосфорилируется одна из легких цепей, получившая название регуляторной. Фосфорилирование легкой цепи миозина катализируется киназой легких цепей миозина (КЛЦМ), которая активируется кальмодулином после его взаимодействия с ионами кальция.
Дефосфорилирование легких цепей миозина осуществляется фосфатазой легких цепей миозина (ФЛЦМ). Скорость укорочения гладкого миоцита (то есть скорость циклинга акто-миозиновых мостиков) зависит от интенсивности фосфорилирования легких цепей миозина. При преобладании процесса дефосфорилирования над процессом фосфорилирования гладкая мышца расслабляется.
Ионы кальция могут поступать в клетку несколькими путями.
Под влиянием медиаторов. При взаимодействии медиатора с расположенным на поверхности гладкомышечной клетки соответствующим рецептором, происходит открытие рецептор-активируемого Са ++ канала и вход ионов кальция внутрь клетки.
Через потенциал-зависимые каналы, открывающиеся при изменении разности потенциалов на мембране гладкомышечной клетки. Ионы кальция могут поступать в клетку через потенциал-зависимые кальциевые каналы, которые открывается в мембране гладкомышечных клеток при появлении на ней потенциала действия.
Источником ионов кальция может быть саркоплазматический ретикулум. В мембране саркоплазматического ретикулума есть каналы, которые активируются (открываются) инозитолтрифосфатом (IP 3) и поэтому получили название IP 3 -рецепторов. Это название позволяет отличать их от рианодиновых рецепторов, обнаруженных в саркоплазматическом ретикулуме поперечнополосатых мышц.
Механизм длительно удерживаемого укорочения («latch» -механизм). «Мостики на замке» . Дефосфорилированые поперечные мостики, но оставшиеся прикрепленными к актину получили название мостики на замке. Это позволяет гладкой мышце поддерживать тонус при минимальных энергетических затратах и связано с тем, что данные мостики не циклируют и поэтому не требуют большого количества энергии АТФ. Подобное явление в значительно меньшей степени имеет место и в поперечнополосатой скелетной мышце, и также не требует большого числа нервных импульсов и концентрации гормонов.

Влияние тканевых метаболитов и гормонов на сократительную активность гладкой мышцы

Влияние тканевых метаболитов на сократительную активность гладкой мышцы. Сократительная активность гладкомышечной ткани, например, сосудистой, в значительной степени зависит от химического состава окружающей межклеточной жидкости. Таким образом, осуществляется регуляция сосудистого тонуса по принципу отрицательной обратной связи. Уменьшение напряжения кислорода, увеличение напряжения углекислого газа или ионов водорода в тканевой жидкости сопровождается вазодилатацией. Кроме того, увеличение концентрации аденозина, молочной кислоты, ионов калия или уменьшения ионов кальция, а также уменьшение температуры тела приводит к локальной вазодилатации.
Влияние гормонов на сократительную активность гладкой мышцы. Среди гормонов, циркулирующих в крови, обладающих выраженным эффектом на активность гладкой мышцы можно выделить следующие: адреналин, норадреналин, вазопресин, ангиотензин, окситоцин, а также такие биоактивные вещества как ацетилхолин, серотонин и гистамин. В гладкой мышце под влиянием гормона приходит активация сокращения только в том случае если на поверхности ее мембраны находится соответствующий рецептор, связанный с каналом, имеющим лиганд-активируемое воротное устройство. Напротив, гормон вызывает торможение активности гладких миоцитов если взаимодействует с ингибиторным рецептором.
Механизм сокращения и расслабления гладкой мышцы, вызванного гормонами и тканевыми метаболитами. Если гормоно-рецепторное взаимодействие приводит к открытию натриевых или кальциевых каналов, то развивается деполяризация их мембраны таким же образом как это происходит при воздействии нервного импульса. В некоторых случаях развивается потенциал действия. Однако очень часто деполяризация наблюдается без потенциала действия. Как правило, эта деполяризация обусловлена входом внутрь клетки ионов кальция, которые инициирует сокращение гладкой мышцы.
В том случае, если гормон-рецепторное взаимодействие ингибирует сокращение, то, как правило, это связано с закрытием натриевых или кальциевых каналов, что не позволяет положительным ионам входить в клетку или приводит к открытию калиевых каналов, через которые положительно заряженные ионы калия, выходят из клетки. В любом случае увеличивается элетроотрицательность внутренней поверхности мембраны и развивается ее гиперполяризация. Кроме того, существует возможность активации сократительной активности гладкой мышцы без изменения мембранного потенциала. В этом случае под влиянием гормон-рецепторного взаимодействия не происходит открытие каких-либо каналов, расположенных в сарколемме, но вместо этого кальций высвобождается из саркоплазматического ретикулума и инициирует сокращение мышцы. В другом случае гормоно-рецепторное взаимодействие приводит к активации аденилат или гуанилатциклазы, расположенной на внутренней поверхности сарколеммы. При этом происходит увеличение внутриклеточной концентрации вторичных посредников, таких как ц-АМФ или ц-ГМФ. В свою очередь, ц-АМФ и ц-ГМФ обладают множеством разнообразных эффектов, один из которых заключается в том, что под их влиянием происходит фосфорилирование протеинкиназ, а затем и ферментов, участвующих в угнетении сократительной активности гладкой мышцы. Данному эффекту способствует и то, что данные вещества активируют кальциевый насос, откачивающий ионы кальция из саркоплазмы в саркоплазматический ретикулум.

Рост гладкой мышцы

В связи с тем, что пролиферация гладкой мышцы вносит большой вклад в развитие таких патологических процессов, как атеросклероз, гипертензия и утолщение сосудистой стенки, наблюдающееся при повреждении эндотелиоцитов, важно знать основные механизмы регуляции роста. Данный процесс является чрезвычайно сложным и включает в себя действие различных факторов роста. Катехоламины, ангиотензин-II активирует рост и пролиферацию гладкой мышцы. Глюкокортикоиды ингибируют рост. К другим регуляторным факторам можно отнести производные арахидоновой кислоты, аденозин, гепариноиды и серотонин.

Гладкие мышцы -- сократительная ткань, состоящая из отдельных клеток и не имеющая поперечной исчерченности (Рис. 1.). У гладкомышечной клетки веретенообразная форма, длина которой примерно 50 - 400 мкм и толщина 2-10 мкм. Отдельные нити соединены особыми межклеточными контактами - десмосомами и образуют сеть с вплетенными в нее коллагеновыми волокнами. Отсутствие поперечной исчерченности, характерной для сердечной и скелетной мускулатуры, объясняется нерегулярным распределением миозиновых и актиновых нитей. Укорачиваются гладкие мышцы также за счет скольжения миофиламентов относительно друг друга, но скорость скольжения и расщепление АТФ здесь в 100 - 1000 раз ниже, чем у поперечнополосатых мышц. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам.

Гладкие мышцы входят в состав внутренних органов, сосудов и кожи. Они отличаются наличием интересных функциональных особенностей: способностью осуществлять относительно медленные движения и длительные тонические сокращения. Медленные движения (сокращения), часто имеющие ритмический характер сокращения гладких мышц стенок полых органов: желудка, кишечника, протоков пищеварительных желез, мочевого пузыря, желчного пузыря, обеспечивают перемещение содержимого этих органов. Примером являются маятникообразные и перистальтические движения кишечника. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их тонические сокращения препятствуют выходу содержимого. Это обеспечивает нахождение желчи в желчном пузыре и мочи в мочевом пузыре, формирование каловых масс в толстом кишечнике.

Показано строение (слева) поперечнополосатых и гладких мышц у позвоночных и зависимость между электрической (сплошные линии) и механической (пунктирные линии) активностью (справа). А. Поперечнополосатые мышцы являются многоядерными клетками цилиндрической формы. В них генерируются быстрые потенциалы действия и быстрые сокращения. Б. Волокна гладкой мышцы имеют по одному ядру, небольшой размер и веретенообразную форму. Они соединены между собой боковыми поверхностями через щелевые контакты и образуют электрически объединенные группы клеток.

Иннервация диффузная, активация волокон осуществляется за счет высвобождения медиатора из расширений, расположенных вдоль вегетативного нерва. Несмотря на то, что потенциалы действия клеток гладких мышц быстрые, результирующие сокращения развиваются медленно и протекают долго.

В состоянии постоянного тонического сокращения находятся тонкие гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину кровяного давления и кровоснабжение органов.

Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная - отростками клеток симпатических ганглиев. Тонус и двигательная функция гладких мышц регулируется также и гуморальными влияниями.

Все гладкие мышц можно разделить на две группы:

1. Гладкие мышцы с миогенной активностью. Во многих гладких мышцах кишечника (например, слепой кишки) одиночное сокращение, вызванное потенциалом действия, продолжается несколько секунд. Следовательно, сокращения, следующие с интервалом менее 2с, накладываются друг на друга, а при частоте выше 1 Гц сливаются в более или менее гладкий тетанус (тетанообразный тонус) (рис.2). Природа такого тетануса миогенная; в отличие от скелетной мышцы гладкие мышцы кишечника, мочеточника, желудка и матки способны к спонтанным тетанообразным сокращениям после изоляции и денервации и даже при блокаде нейронов интрамуральных ганглиев. Следовательно, их потенциалы действия не обусловлены передачей к мышце нервных импульсов, а имеют миогенное происхождение.

Миогенное возбуждение возникает в клетках-ритмоводителях (пейсмекерах), которые идентичны другим мышечным клеткам по структуре, но отличаются электрофизиологическими свойствами. Пейсмекерные потенциалы деполяризуют мембрану до порогового уровня, вызывая потенциал действия. Из-за поступления в клетку катионов (главным образом Са2+) мембрана деполяризуется до нулевого уровня и даже на несколько миллисекунд меняет полярность до +20 мВ. После реполяризации следует новый пейсмекерный потенциал, обеспечивающий генерацию следующего потенциала действия. При воздействии на препарат толстой кишки ацетилхолина пейсмекерные клетки деполяризуются до околопорогового уровня, и частота возникновения потенциалов действия возрастает. Вызванные ими сокращения сливаются до почти гладкого тетануса. Чем выше частота следования потенциалов действия, тем слитнее тетанус и тем сильнее сокращение, возникающее в результате суммации одиночных сокращений. И, напротив, нанесение на тот же препарат норадреналина гиперполяр образует мембрану и в результате снижает частоту возникновения потенциалов действия и величину тетануса. Таковы механизмы модуляции спонтанной активности пейсмекеров вегетативной нервной системой и ее медиаторами.

Рис.2.

Обработка ацетилхолином (стрелка) повышает частоту возникновения потенциалов действия так, что одиночные сокращения сливаются в тетанус. Нижняя запись - временной ход мышечного напряжения.

2. Гладкие мышцы без миогенной активности. В отличие от мышц кишечника у гладких мышц артерий, семенных протоков, радужки, а также у ресничных мышц спонтанная активность обычно слабая или ее вообще нет. Их сокращение возникает под действием импульсов, поступающих к этим мышцам по вегетативным нервам. Такие особенности обусловлены структурной организацией их ткани. Хотя клетки в ней электрически связаны нексусами, многие из них образуют прямые синаптические контакты с иннервирующими их аксонами, но привычных нейро-мышечных синапсов в гладкомышечной ткани не образуют. Высвобождение медиатора происходит из многочисленных утолщений (расширений), расположенных по длине вегетативных аксонов (Рис. 1).

Медиаторы достигают путем диффузии мышечных клеток и активизируют их. При этом в клетках возникают возбуждающие потенциалы, переходящие в потенциалы действия, которые вызывают тетанообразное сокращение.

Функции и свойства гладких мышц

Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения -- тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении -- расслабляется.

Автоматия. ПД гладких мышечных клеток имеют авторитмический (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в различных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге -- тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина.

Химическая чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

Норадреналин действует на б- и в-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с в-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на б-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.

Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбудима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная активность мускулатуры матки затормаживается.

Гладкие мышцы представлены в стенках органов пищеварительного канала, бронхов, кровеносных и лимфатических сосудов, мочевого пузыря, в матке, а также в радужной оболочке глаза, в цилиарной мышце, коже и железах. В отличие от поперечнополосатых мышц они не являются отдельными мышцами, а составляют только часть органов. Гладкие мышечные клетки имеют удлиненную веретенообразную или лентовидную форму с заостренными концами. Их длина у человека обычно бывает около 20 мкм. Наибольшей длины (до 500 мкм) достигают гладкие мышечные клетки в стенке беременной матки человека. В средней части клетки находится палочковидное ядро, а в цитоплазме вдоль всей клетки параллельно друг другу проходят тончайшие совершенно однородные миофибриллы. Поэтому клетка не имеет поперечной исчерченности. Более толстые миофибриллы расположены в наружных слоях клетки. Они называются пограничными и обладают одноосным двойным лучепреломлением. В электронном микроскопе видно, что миофибриллы являются пучками протофибрилл и обладают поперечной исчерченностью, не видимой в световом микроскопе. Гладкие мышечные клетки могут регенерировать путем деления (митоза). В них содержится разновидность актомиозина - тоноактомиозин. Между гладкими мышечными клетками имеются такие же участки контакта мембран, или нексусы, как и между сердечными, по которым, как предполагается, распространяется возбуждение и торможение с одних гладких мышечных клеток на другие.

В гладких мышцах возбуждение распространяется медленно Сокращения гладкой мышцы вызываются более сильными и более продолжительными раздражениями, чем скелетной. Латентный период ее сокращения продолжается несколько секунд. Гладкие мышцы сокращаются значительно медленнее скелетных. Так, период сокращения гладкой мышцы в желудке лягушки равен 15-20 с. Сокращения гладких мышц могут длиться многие минуты и даже часы. В отличие от скелетных мышц сокращения гладких мышц тонические. Гладкие мышцы способны при чрезвычайно малой затрате веществ и энергии долго находиться в состоянии тонического напряжения. Например, гладкие мышцы сфинктеров пищеварительного канала, мочевого пузыря, желчного пузыря, матки и других органов находятся в тонусе в течение десятков минут и многих часов. Гладкая мускулатура стенок кровеносных сосудов высших позвоночных животных остается в тонусе в течение всей жизни.

Существует прямая зависимость между частотой импульсов, возникающих в мышце, и уровнем ее напряжения. Чем больше частота, тем до известного предела больше тонус вследствие суммации напряжений неодновременно напрягающихся мышечных волокон.

Гладкие мышцы обладают тастичностью - способностью сохранять свою длину при растяжении без изменения напряжения в отличие от скелетных, которые при растяжении напряжены.

В отличие от скелетных мышц многие гладкие мышцы обладают автоматизмом. Они сокращаются под влиянием местных рефлекторных механизмов, например мейснеровского и ауэрбаховского сплетений в пищеварительном канале, или химических веществ, поступающих в кровь, например ацетилхолина, норадреналина и адреналина. Автоматические сокращения гладких мышц усиливаются или тормозятся под влиянием нервных импульсов, поступающих из нервной системы. Следовательно, в отличие от скелетных мышц существуют специальные тормозные нервы, которые прекращают сокращение и вызывают расслабление гладких мышц. Некоторые гладкие мышцы, имеющие большое количество нервных окончаний, не обладают автоматизмом, например сфинктер зрачка, мигательная перепонка кошки.

Гладкие мышцы могут сильно укорачиваться, значительно больше, чем скелетные. Одиночное раздражение может вызвать сокращение гладкой мышцы на 45%, а максимальное сокращение при частом ритме раздражения может достигать 60-75%.

Гладкая мышечная ткань развивается также из мезодермы (возникает из мезенхимы); она состоит из отдельных сильно вытянутых клеток веретенообразной формы, значительно меньшего размера по сравнению с волокнами поперечнополосатых мышц. Их длина колеблется от 20 до 500 μ, а ширина - от 4 до 7 μ. Как правило, эти клетки обладают одним лежащим в центре клетки удлиненной формы ядром. В протоплазме клетки в продольном направлении проходят многочисленные и очень тонкие миофибриллы, которые поперечной исчерченности не имеют и без особой обработки совершенно незаметны. Каждая гладкая мышечная клетка одета тончайшей соединительнотканной оболочкой. Этими оболочками соседние клетки связаны между собой. В отличие от поперечнополосатых волокон, расположенных почти во всю длину скелетной мышцы, на протяжении любого гладкомышечного комплекса встречается значительное число клеток, расположенных в одну линию.

Гладкие мышечные клетки встречаются в организме или разбросанными поодиночке в соединительной ткани, или связанными в мышечные комплексы различной величины.

В последнем случае каждая мышечная клетка бывает также окружена со всех сторон межклеточным веществом, пронизанным тончайшими фибриллами, количество которых может быть весьма различно. В межклеточном веществе обнаруживаются и тончайшие сети эластических волоконец.

Гладкие мышечные клетки органов объединяются в мышечные пучки. Во многих случаях (мочевые пути, матка и др.) эти пучки ветвятся и сливаются с другими пучками, образуя различной плотности поверхностные сети. Если же большое количество пучков располагается тесно, то образуется плотная мышечная оболочка (например, желудочно-кишечного тракта). Кровоснабжение гладких мышц осуществляется через сосуды, которые проходят в больших соединительнотканных прослойках между пучками; капилляры проникают между волокнами каждого пучка и, разветвляясь вдоль него, образуют густую капиллярную сеть. Гладкомышечная ткань содержит также лимфатические сосуды. Гладкие мышцы иннервируются волокнами вегетативной нервной системы. Гладкие мышечные клетки в отличие от волокон поперечнополосатых мышц производят медленные, длительные сокращения. Они способны работать долго и с большой силой. Например, мышечные стенки матки при родах, протекающих часами, развивают такую силу, которая недоступна для поперечнополосатых мышц. Деятельность гладких мышц, как правило, не подчинена нашей воле (вегетативная иннервация, см. ниже) - они непроизвольны.

Гладкая мускулатура по своему развитию (филогенезу) является более древней, чем поперечнополосатая, и в большей степени распространена у низших форм животного мира.

Классификация гладких мышц

Гладкие мышцы подразделяются на висцеральные (унитарные) и мультиунитарные. Висцеральные гладкие мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К мулыпиунитарным относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В висцеральных гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Несмотря на это, возбуждение с нервных окончаний передается на все гладкие мышечные клетки пучка благодаря плотным контактам между соседними миоцитами - нексусам. Нексусы позволяют потенциалам действия и медленным волнам деполяризации распространяться с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса.

Функции и свойства гладких мышц

Пластичность . Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением . Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцію.

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ соединяется с кальмодулином (кальмодулин - рецептивный белок для иона Са2+). Возникающий комплекс активирует фермент - киназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является присоединение Са2+ к тропонину.

Химическая чувствительность . Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

Норадреналин действует на α- и β-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с β-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на α-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.

Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбудима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная активность мускулатуры матки затормаживается.

Гладкие мышцы входят в состав внутренних органов. Благодаря сокращению они обеспечивают двигательную (моторную) функцию них органов (пищеварительный канал, мочеполовая система, кровеносные сосуды и т.д.). В отличие от скелетных мышц, гладкие мышцы являются непроизвольными.

Морфо-функциональная структура гладких мышц. Основной структурной единицей гладких мышц является мышечная клетка, которая имеет веретенообразную форму и покрыта снаружи плазматической мембраной. Под электронным микроскопом в мембране можно заметить многочисленные углубления - кавеолы, которые значительно увеличивают общую поверхность мышечной клетки. Сарколеммы непосмугованих мышечной клетки включает в себя плазматическую мембрану вместе с базальной мембраной, которая покрывает ее извне, и прилегающими коллагеновыми волокнами. Основные внутриклеточные элементы:ядро, митохондрии, лизосомы, микротрубочки, саркоплазматической сети и сократительные белки.

Мышечные клетки образуют мышечные пучки и мышечные слои. Межклеточное пространство (в 100 нм и более) заполнен эластичными и коллагеновыми волокнами, капиллярами, фибробластами и др.. В некоторых участках мембраны соседних клеток лежат очень плотно (щель между клетками составляет 2-3 нм). Предполагают, что эти участки (нексус) служат для межклеточного связи, передачи возбуждения. Доказано, что одни гладкие мышцы содержат большое количество нексус (сфинктер зрачка, циркулярные мышцы тонкой кишки и др.), у других их мало или совсем нет (семявыносящих протоков, продольные мышцы кишок). Между непосмугованих мышечными клетками существует также промежуточный, или десмоподибний, связь (через утолщение мембраны и с помощью отростков клеток). Очевидно, эти связи имеют значение для механического соединения клеток и передачи механической силы клетками.

Благодаря хаотичному распределению миозинових и актиновых протофибрилл клетки гладких мышц не поперечнополосатые, как скелетные и сердечная. В отличие от скелетных мышц, в гладких мышцах нет Т-системы, а саркоплазматической сети составляет только 2-7% объема миоплазмы и не имеет связей с внешней средой клетки.

Физиологические свойства гладких мышц .

Гладкомышечные клетки, - как-поперечнополосатые, сокращаются вследствие скольжения актиновых протофибрилл между миозиновои, однако скорость скольжения и гидролиз АТФ, а значит, и скорость сокращения, в 100-1000 раз меньше, чем в поперечнополосатых мышцах. Благодаря этому гладкие мышцы - хорошо приспособлены для длительного скольжения с небольшим затратой энергии и без усталости.

Гладкие мышцы с учетом способности генерировать ПД в ответ на пороговое или надгиорогове раздражение условно делят на фазные и тонические. Фазные мышцы генерируют полноценный ПД, тонические - только местный, хотя им присущ и механизм генерации полноценных потенциалов. Неспособность тонических мышц к ПД объясняется высокой калиевой проницаемостью мембраны, которая препятствует развитию регенеративной деполяризации.

Величина мембранного потенциала гладкомышечных клеток непосмугованих мышц варьирует от -50 до -60 мВ. Как и в других мышцах, в том числе и в нервных клетках, в его образовании принимают участие главным образом к +, Na +, Cl-. В гладкомышечных клетках пищеварительного канала, матки, некоторых сосудах мембранный потенциал нестабилен, наблюдаются спонтанные колебания в виде медленных волн деполяризации, на вершине которых могут появляться разряды ПД. Длительность ПД гладких мышц колеблется от 20-25 мс до 1 с и более (например, в мышцах мочевого пузыря), т.е. она длиннее, чем продолжительность ПД скелетных мышц. В механизме ПД гладких мышц рядом с Na + большую роль играет Са2 +.

Спонтанная миогенная активность. В отличие от скелетных мышц, гладкие мышцы желудка, кишок, матки, мочеточников имеют спонтанную миогенные активность, т.е. развивают спонтанные тетаногиодибни сокращения. Они хранятся в условиях изоляции этих мышц и при фармакологическом выключении интрафузальных нервных сплетений. Итак, ПД возникает в собственно гладких мышцах, а не обусловлен передачей в мышцы нервных импульсов.

Эта спонтанная активность имеет миогенные происхождения и возникает в мышечных клетках, которые выполняют функцию водителя ритма. В этих клетках местный потенциал достигает критического уровня и переходит в ПД. Но за реполяризацию мембраны спонтанно возникает новый местный потонциал, который вызывает еще один ПД, и т.д. ПД, распространяясь через нексус на соседние мышечные клетки со скоростью 0,05-0,1 м / с, охватывает весь мышцу, вызывая его сокращение. Например, перистальтические сокращения желудка возникают с частотой 3 раза за 1 мин, сегментарные и Маятникообразные движения толстой кишки-в 20 раз за 1 мин в верхних отделах и 5-10 за 1 мин - в нижних. Таким образом, гладкие мышечные волокна названных внутренних органов обладают автоматизмом, который проявляется их способностью ритмически сокращаться при отсутствии внешних раздражителей.

Какова причина возникновения потенциала в клетках гладких мышц водителя ритма? Очевидно, он возникает вследствие уменьшения калиевой и увеличение натриевой и кальциевой проницаемости мембраны. Что касается регулярного возникновения медленных волн деполяризации, наиболее выраженных в мышцах ЖКТ, го нет достоверных данных об их ионное происхождения. Возможно, определенную роль играет уменьшение первоначального инактивирующего компонента калиевого тока при деполяризации мышечных клеток вследствие инактивации соответствующих ионных калиевых каналов.

Эластичность и растяжимость гладких мышц. В отличие от скелетных мышц, гладкие при растяжении себя как пластичные, эластичные структуры. Благодаря пластичности гладкая мышца может быть полностью расслаблен как в сокращенном, так и в растянутыми состоянии. Например, пластичность гладких мышц стенки желудка или мочевого пузыря по мере наполнения этих органов предотвращает повышение внутриполостного давления. Чрезмерное растяжение часто приводит к стимулированию сокращения, которое обусловлено деполяризацией клеток водителя ритма, возникающий при растяжении мышцы, и сопровождается повышением частоты ПД, а вследствие этого - усилением сокращения. Сокращение, которое активизирует процесс растяжения, играет большую роль в саморегулировании базального тонуса кровеносных сосудов.

Механизм сокращения гладких мышц. Обязательным условием возникновения сокращение гладких мышц, как и скелетных, е увеличение концентрации Са2 + в миоплазми (до 10в-5 М). Считается, что процесс сокращения активизируется преимущественно внеклеточным Са2 +, поступающего в мышечные клетки через потенциалзависимые Са2 +-каналы.

Особенность нервно-мышечной передачи в гладких мышцах заключается в том, что иннервация осуществляется вегетативной нервной системой и она может оказывать как возбуждающий, так и тормозящее влияние. По типу различают холинергические (медиатор ацетилхолин) и адренергические (медиатор норадреналин) медиаторы. Первые обычно содержатся в мышцах пищеварительной системы, вторые - в мышцах кровеносных сосудов.

Один и тот же медиатор в одних синапсах может быть возбуждающих, а в других - тормозным (в зависимости от свойств циторецепторив). Адренорецепторы делят на а-и В-. Норадреналин, воздействуя на а-адренорецепторы, суживает кровеносные сосуды и тормозит моторику пищеварительного тракта, а воздействуя на В-адренорецепторы, стимулирует деятельность сердца и расширяет кровеносные сосуды некоторых органов, расслабляет мышцы бронхов. Описаны нервно-мышечно-. ную передачу в гладких мышцах за помощью и других медиаторов.

В ответ на действие возбуждающего медиатора происходит деполяризация клеток гладких мышц, которая проявляется в виде возбуждающего синаптической потенциала (ССП). Когда он достигает критического уровня, возникает ПД. Это происходит тогда, когда до нервного окончания друг за другом подходят несколько импульсов. Возникновение ЗСГИ является следствием увеличения проницаемости постсинаптической мембраны для Na +, Са2 + и СИ ".

Тормозной медиатор вызывает гиперполяризацию постсинаптической мембраны, что проявляется в тормозном синаптического потенциале (ГСП). В основе гиперполяризации лежит повышение проницаемости мембраны в основном для К +. Роль тормозного медиатора в гладких мышцах, возбуждаемые ацетилхолином (например, мышцы кишки, бронхов), играет норадреналин, а в гладких мышцах, для которых возбуждающих медиатором является норадреналин (например, мышцы мочевого пузыря), - ацетилхолин.

Клинико-физиологический аспект. При некоторых заболеваниях, когда нарушается иннервация скелетных мышц, их пассивное растяжение или смещение сопровождается рефлекторным повышением их тонуса, т.е. устойчивости к растяжению (спастичность или ригидность).

При нарушении кровообращения, а также под действием некоторых продуктов метаболизма (молочной и фосфорной кислот), ядовитых веществ, алкоголя, усталости, снижения температуры мышц (например, при длительном плавании в холодной воде) после длительного активного сокращения мышцы может возникать контрактура. Чем больше нарушается функция мышцы, тем сильнее выражена контрактурно последействие (например, контрактура жевательных мышц при патологии челюстно-лицевой области). Каково происхождение контрактуры? Считается, что контрактура возникла вследствие уменьшения в мышце концентрации АТФ, что привело к образованию постоянной связи между поперечными мостиками и актиновыми протофибрилл. При этом мышца теряет гибкость и становится твердым. Контрактура проходит, мышца расслабляется, когда концентрация АТФ достигает нормального уровня.

При заболеваниях типа миотонии клеточные мембраны мышц возбуждаются так легко, что даже незначительное раздражение (например, введение игольчатого электрода при электромиографии) обусловливает разряд мышечных импульсов. Спонтанные ПД (потенциалы фибрилляции) регистрируются также на первой стадии после денервации мышцы (пока бездействие не приведет к его атрофии).

Выполняют очень важную функцию в организмах живых существ - формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

Разновидности данных тканей

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

  • скелетная;
  • сердечная.

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Гладкая особенности строения

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток - миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты гладкой мускулатуры

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

  • овальными;
  • веретеновидными удлиненными;
  • округлыми;
  • отростчатыми.

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

  • гликопротеиды;
  • проколлаген;
  • эластаны;
  • межклеточное вещество;
  • протеогликаны.

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Происхождение данной мускулатуры

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации - это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные - все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов - структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте - это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех в рассматриваемой ткани остаются примерно одинаковыми.

Основные свойства данной ткани

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Белки клеток

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

  • миозиновые нити;
  • актин;
  • небулин;
  • коннектин;
  • тропомиозин.

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Гладкая мышечная ткань: рисунок

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок - исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Области пространственного расположения в организме

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Способы восстановления

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный и редко встречаемый путь регенерации данной ткани.

Иннервация гладкой мускулатуры

Гладкая свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Функции гладкой мышечной ткани

Каково же значение этой структуры? Зачем нужна ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.