Основная функция плавательного пузыря у рыб. Плавательный пузырь и гидродинамические особенности рыб

Одно из любимых лакомств рыболовов – рыбий плавательный пузырь, поджаренный на костре… но, разумеется, природа создала этот орган не для человеческой забавы. А для чего?

Ответ очевиден: плавательный пузырь необходим рыбам для того, чтобы плавать – точнее, оставаться на определенной глубине. Это нечто вроде природного гидростатического датчика.

Представим себе, что рыба опустилась чуть поглубже. Давление воды на ее тело сразу же возросло. За счет увеличения давления плавательный пузырь начинает сжиматься, выталкивая из себя воздух – причем происходит это автоматически, управлять данным процессом произвольно рыбы неспособны.

Как мы помним из школьного курса физики, воздух легче воды. Следовательно, если количество воздуха в пузыре уменьшилось, рыба стала несколько тяжелее, и ей становится легче погружаться. Если бы ее вес был постоянным, ей пришлось бы приложить немало усилий для погружения, но можно сказать, что пузырь делает за нее половину работы.

Нервные окончания, пронизывающие пузырь, передают в центральную нервную систему соответствующие сигналы, благодаря которым рыба чувствует, на какой глубине она находится, какое давление испытывает, и она корректирует свое движение в соответствии с этим.

Если же рыба поднимается, то все происходит с точностью до наоборот: давление воды на тело рыбы снижается, плавательный пузырь расширяется, втягивая в себя воздух. Вес рыбы уменьшается, и ей становится легче подниматься.

Такая функция плавательного пузыря объясняет, почему его нет у глубоководных рыб и у тех, которые ведут донный образ жизни – зачем он им, если они никогда и не пытаются всплыть!

Впрочем, гидростатика – это главная, но не единственная функция плавательного пузыря. Рыб принято считать «образцом» молчаливости, но ученые-ихтиологи никогда с этим не согласятся. Рыбы вполне способны подавать сигналы себе подобным, преобразуя колебания воды в звуковые волны – и делают они это тоже с помощью плавательного пузыря.

Каким образом рыбы обзавелись таким полезным приобретением?

На этот вопрос отвечает эмбриональное развитие. Плавательный пузырь формируется из выроста кишечной трубки. В общем-то, это неудивительно, ведь первое, что сформировалось у самых древних многоклеточных – это кишечная полость, прочие органы так или иначе должны были произойти от нее. А вот дальше возможны варианты: проход между кишечником и плавательным пузырем у одних видов рыб зарастает, у других – сохраняется. Это нашло отражение в классификации рыб: первых ученые называют физоклистами (закрытопузырными), а вторых – физостомами (открытопузырными). У физоклистов газы попадают в пузырь из крови через красное тело – скопление капилляров на его стенке, а у физостом – через кишечник, они попросту заглатывают воздух.

Кстати, расширение с втягиванием воздуха, сжатие с его выталкиванием, а у открытопузыпных еще и через рот… вам это ничего не напоминает? Конечно же, легкие! Да, плавательный пузырь – это эволюционный «предок» легких, которыми обзавелись сухопутные животные, и мы – в том числе.

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ И ГИДРОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

Плавучесть рыб (отношение плотности тела рыбы к плотности воды) может быть нейтральной (0), положительной или отрицательной. У большинства видов плавучесть колеблется от +0,03 до –0,03. При положительной плавучести рыбы всплывают, при нейтральной парят в толще воды, при отрицательной погружаются.

Рис. 10. Плавательный пузырь карповых.

Нейтральная плавучесть (или гидростатическое равновесие) у рыб достигается:

1) при помощи плавательного пузыря;

2) обводнением мышц и облегчением скелета (у глубоководных рыб)

3) накоплением жира (акулы, тунцы, скумбрии, камбалы, бычки, вьюны и т.д.).

Большинство рыб имеют плавательный пузырь. Его возникновение связывают с появлением костного скелета, который увеличивает удельный вес костных рыб. У хрящевых рыб плавательный пузырь отсутствует, из костистых его нет у донных (бычки, камбалы, пинагор), глубоководных и некоторых быстроплавающих видов (тунец, пеламида, скумбрия). Дополнительным гидростатическим приспособлением у этих рыб является подъемная сила, которая образуется за счет мускульных усилий.

Плавательный пузырь образуется в результате выпячивания дорзальной стенки пищевода, его основная функция – гидростатическая. Плавательный пузырь воспринимает также изменения давления, имеет непосредственное отношение к органу слуха, являясь резонатором и рефлектором звуковых колебаний. У вьюновых плавательный пузырь покрыт костной капсулой, утратил гидростатическую функцию, и приобрел способность воспринимать изменения атмосферного давления. У двоякодышащих и костных ганоидов плавательный пузырь выполняет функцию дыхания. Некоторые рыбы способны при помощи плавательного пузыря издавать звуки (треска, мерлуза).

Плавательный пузырь представляет собой относительно большой эластичный мешок, который расположен под почками. Он бывает:

1) непарный (большинство рыб);

2) парный (двоякодышащие и многоперы).

У многих рыб плавательный пузырь однокамерный (лососевые), у некоторых видов двухкамерный (карповые) или трехкамерный (ошибень), камеры между собой сообщаются. У ряда рыб отплавательного пузыря отходят слепые отростки, соединяющие его с внутренним ухом (сельдевые, тресковые и др.).

Плавательный пузырь заполнен смесью кислорода, азота и углекислого газа. Соотношение газов в плавательном пузыре у рыб различается и зависит от вида рыб, глубины обитания, физиологического состояния и др. У глубоководных рыб в плавательном пузыре содержится значительно больше кислорода, чем у видов, обитающих ближе к поверхности. Рыбы с плавательным пузырем делятся на открытопузырных и закрытопузырных. У открытопузырных рыб плавательный пузырь соединяется с пищеводом с помощью воздушного протока. К ним относятся – двоякодышащие, многоперы, хрящевые и костные ганоиды, из костистых – сельдеобразные, карпообразные, щукообразные. У атлантической сельди, шпрота и хамсы помимо обычного воздушного протока имеется второй проток позади анального отверстия, который соединяет заднюю часть плавательного пузыря с внешней средой. У закрытопузырных рыб воздушный проток отсутствует (окунеобразные, трескообразные, кефалеобразные и др.). Первоначальное заполнение плавательного пузыря газами у рыб происходит при заглатывании личинкой атмосферного воздуха. Так, у личинок карпа это имеет место через 1–1,5 суток после вылупления. Если этого не происходит, развитие личинки нарушается и она гибнет. У закрытопузырных рыб плавательный пузырь со временем утрачивает связь с наружной средой, у открытопузырных воздушный проток сохраняется в течение всей жизни. Регулирование объема газов в плавательном пузыре у закрыто пузырных рыб происходит при помощи двух систем:

1) газовая железа (наполняет пузырь газами из крови);

2) овал (поглощает газы из пузыря в кровь).

Газовая железа – система артериальных и венозных сосудов, расположенных в передней части плавательного пузыря. Овал участок во внутренней оболочке плавательного пузыря с тонкими стенками, окруженный мышечным сфинктером, расположен в задней части пузыря. При расслаблении сфинктера газы из плавательного пузыря поступают к среднему слою его стенки, где имеются венозные капилляры и происходит их диффузия в кровь. Количество поглощаемых газов регулируется изменением величины отверстия овала.

При погружении закрытопузырных рыб объем газов в их плавательном пузыре уменьшается, и рыбы приобретают отрицательную плавучесть, но по достижении определенной глубины адаптируются к ней путем выделения газов в плавательный пузырь через газовую железу. При подъеме рыбы, когда давление уменьшается, объем газов в плавательном пузыре увеличивается, избыток их поглощается через овал в кровь, а затем через жабры удаляется в воду. У открытопузырных рыб овала нет, избыток газов выводится наружу через воздушный проток. Большинство открытопузырных рыб не имеют газовой железы (сельдевые, лососевые). Секреция газов из крови в пузырь развита слабо и осуществляется с помощью эпителия, расположенного на внутреннем слое пузыря. Многие открытопузырные рыбы для обеспечения на глубине нейтральной плавучести перед погружением захватывают воздух. Однако при сильных погружениях его бывает недостаточно, и наполнение плавательного пузыря происходит газами, поступающими из крови.

Юрий Фролов, биолог

Фото: © Виктор Застольский / Фотобанк Лори.

Рисунок: Sharon High School.commons.wikimedia.org.wiki.

Карп (Cyprinus carpio carpio) может заглотить немного воздуха, всплыв на поверхность, и он попадёт в плавательный пузырь из пищевода по узкому каналу. Фото Сергея Горланова.

У окуня морского (Sebastes sp.), как, впрочем, и у речного, пузырь замкнут и полностью отделён от кишечника. Фото: jovibor.

У песчаной акулы (семейство Odontaspididae) нет плавательного пузыря. Его роль выполняет обособленная часть желудка. Фото: Richard Ling / Wikimedia Commons / CC-BY-SA-2.0.

Камбалы, как и многие другие донные рыбы, обходятся вообще без плавательного пузыря. На фото: леопардовая камбала, или пятнистый ботус (Bothus pantherinus). Фото: © Сергей Дубров / Фотобанк Лори.

Всем известно, хотя бы из приключенческих и военных кинофильмов, как маневрирует на глубине подводная лодка. У неё есть специальные цистерны, куда можно закачивать забортную воду либо вытеснять её сжатым воздухом. Больше воды - лодка тяжелеет и погружается глубже, больше воздуха - всплывает.

Примерно так же поступают и многие рыбы. Только цистерна у них эластичная, меняющая свой объём - это плавательный пузырь, лежащий в брюшной полости. Вы наверняка его видели, если когда-либо наблюдали, как чистят свежую рыбу.

Типичная рыба примерно на 5% тяжелее воды. Если она не будет прилагать усилий, то опустится на дно. Плавательный пузырь уравнивает удельный вес рыбы с удельным весом воды, что позволяет рыбе висеть неподвижно, не всплывая и не опускаясь. А чтобы ненамного изменить глубину, достаточно слегка подрабатывать плавниками. Регулировать глубину, разумеется, надо и на ходу. Физиологи определили, что плавательный пузырь, поддерживая плавучесть при небольшой скорости, экономит рыбе до 60% усилий, а при быстром движении - более 5%. Кстати, человек при неглубоком дыхании имеет тот же удельный вес, что и вода, а сделав глубокий вдох, он становится легче воды. Так что утонуть нам не так-то легко.

В эволюции плавательный пузырь возник из кишечника. Часть пищевода или желудка обособилась и стала служить не для питания, а для регуляции удельного веса рыбы. На этом этапе эволюции находится, например, песчаная акула: у неё нет плавательного пузыря, но часть желудка обособлена в виде кармана, в который акула заглатывает немного воздуха, чтобы не тонуть.

У некоторых рыб (например, лососёвых, сельдей, карпов) между плавательным пузырём и пищеводом остался узкий канал. Они могут, всплыв на поверхность, заглотить в пузырь воздух, что позволит оставаться в верхних слоях водоёма. Если надо погрузиться глубже, рыба может немного выдохнуть.

У других рыб (тресковых, окунёвых, хека) пузырь совершенно замкнут и отделён от кишечника. Для того чтобы поддуть или слегка спустить его, нужен насос. Насоса у таких рыб даже два, и расположены они в самом пузыре. Особая железа посредством хитрого биохимического механизма забирает газы из крови (а туда они попадают через жабры из воды - ведь в воде даже на большой глубине растворены газы воздуха) и выводит их в пузырь. На другом конце пузыря имеется участок, пронизанный кровеносными сосудами. Через них газы при необходимости переносятся обратно в кровь. Оба процесса идут довольно медленно.

А зачем рыбам вообще менять глубину? Прежде всего, в погоне за пищей, например планктоном, который то всплывает, то погружается. Ещё - чтобы скрыться от хищников, поджидающих на определённой глубине. Некоторые виды всплывают или погружаются для нереста, а вне периода размножения живут на другой глубине.

Наконец, у многих рыб плавательного пузыря вовсе нет. Это донные виды, например камбала, которые тихонько плавают у дна и собирают с него пищу. Плавательного пузыря нет у хрящевых рыб - акул и скатов. Возможно, потому, что их скелет, состоящий из хрящей, легче костного скелета других рыб. Обходятся без пузыря и быстро плавающие хищные рыбы, например тунец, атлантическая скумбрия (её скорость в броске достигает 77 км/ч). Мощная мускулатура этих хищников позволяет им быстро менять глубину и сопротивляться погружению. Но вывести какое-то общее правило - у кого и почему пузырь есть, а у кого нет - довольно трудно. Из двух близкородственных видов со сходным образом жизни один может не иметь пузыря, у другого он вполне развит.

У рыб есть и иные способы снизить удельный вес, чтобы не тонуть. Например, накапливать жир, ведь он легче воды. Так, у одного из видов акул печень на 75% состоит из жира (у млекопитающих в печени 5% жира). Другой вариант - за счёт активной работы почек избавляться от тяжёлых солей в крови и других жидкостях внутри тела. Недаром моряки, потерпевшие кораблекрушение, если в шлюпке кончился запас пресной воды, пьют сок, выжатый из морских рыб: он почти пресный.

Но если какой-то орган у живого организма есть, надо использовать его как можно шире, чтобы зря не простаивал. Некоторые рыбы издают с помощью своего пузыря звуки, другие используют его как резонатор для повышения чувствительности слуха. Пузырь может служить датчиком глубины: при всплытии его объём увеличивается, при погружении уменьшается, и нервные окончания это чувствуют. Наконец, воздух из пузыря рыба может использовать как запас для дыхания при спринтерском рывке.

И вот что интересно: из плавательного пузыря рыб возникли лёгкие наземных позвоночных, в том числе человека.

Министерство сельского хозяйства

Российская Федерация

ФГБОУ ВПО «Ярославская государственная сельскохозяйственная академия»

Кафедра частной зоотехнии

Контрольная работа по дисциплине

РЫБОВОДСТВО

Ярославль, 2013

ВОПРОСЫ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ.

4 . Плавательный пузырь.

24 . Земляные плотины и дамбы.

49 . Характеристика комбикормов.

Вопрос №4.

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ.

Важную роль в обеспечении движения рыб в водной тол­ще играет специальный гидростатический орган – плавательный пузырь . Это однокамерный или двухкамерный орган, наполнен­ный газами. Его нет у глубоководных рыб, а также у рыб, быстро меняющих глубину плавания (тунцы, скумбрия). Кроме гидроста­тической плавучести плавательный пузырь выполняет ряд допол­нительных функций – добавочного органа дыхания, резонатора звуков, звукоиздающего органа (Привезенцев Ю. А., 2000).

Рисунок 1 – Органы водного и воздушного дыхания у взрослых рыб:

1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры

Плавательный пузырь развивается в личинке рыбы из передней кишки и остается у большинства пресноводных рыб в течение всей жизни. После вылупления личинки рыб еще не имеют газа в плавательном пузыре. Чтобы его наполнить, им приходится подниматься к водной поверхности и всасывать там воздух.

В зависимости от анатомии пу­зыря рыбы делятся на две большие группы: открытопузырные (большинство видов) и закрытопузырные (окуневые, треска, ке­фаль, колюшка и др.). У открытопузырных плавательный пузырь сообщается с кишечником протоком, который у закрытопузырных отсутствует. Поскольку выравнивание давления у закрытопузырных длится намного дольше, чем у открытопузырных, они могут только медленно подниматься из глубоких слоев воды. Поэтому у этих рыб передняя кишка из-за сильно раздувшегося плавательного пузыря высовывается изо рта, если их подсекают на глубине и быстро извлекают на поверхность. Самыми известными закрытопузырными являются окунь, судак и колюшка. У некоторых обитающих вблизи дна рыб плавательный пузырь сильно редуцирован или отсутствует полностью. Сом, как типичный представитель придонных рыб, обладает лишь плохо сформированным плавательным пузырем. Бычок-подкаменщик, который держится между камнями и под ними в ручьях и реках, вообще не имеет плавательного пузыря. Поскольку он плохой пловец, то движется по дну с расставленными в стороны грудными плавниками (www.fishingural.ru).

Рисунок 2 – Плавательный пузырь: а) плавательный пузырь, связанный с кишечником; б) плавательный пузырь, не связанный с кишечником.

У карповых рыб плавательный пузырь делится на пе­реднюю и заднюю камеры, которые соединены узким и коротким каналом. Стенка передней камеры состоит из внутренней и наружной оболочек. Наружная оболочка в задней камере отсутствует. Внут­ренняя выстилка обеих камер образована однослойным плоским эпителием, за которым следуют тонкий слой рыхлой соединитель­ной ткани, мышечные тяжи и сосудистый слой. Далее расположены 2-3 эластические пластинки. Наружная оболочка передней камеры состоит из двух слоев плотной волокнистой (игольчатой) соедини­тельной ткани, придающей ей перламутровый блеск. Снаружи обе камеры покрыты серозной оболочкой (Грищенко Л.И., 1999).

У молоди пузырь полностью прозрач­ный и чистый, а с возрастом мутнеет; состоит из соединительнотканной оболочки. Пузырь наполнен различными газами, количественные соотношения которых различны. Наполненный плавательный пузырь представляет собой гидростатический аппарат, способствующий вертикальному перемещению рыб в результате перемещения газов в переднюю или заднюю камеру (при двухкамерном пузыре). Если карп вынужден более длительное время вдыхать воздух, то передняя камера плава­тельного пузыря значительно увеличивается (Кох В., Банк О., Йенс Г., 1980).

Плавательный пузырь является органом, связанным рефлекторно с мышцами тела и влияющим на тонус и координированные движения мышц. Напряжение газов в плавательном пузыре создает определенные импульсы к поведению рыбы. Так, например, если наполнить плавательный пузырь морского окуня индифферентной жидкостью под повышенным давлением так, чтобы стенки пузыря несколько растянулись, рыба плавает у дна; если же давление жидкости на стенке понизить, то рыба стремится вверх, вследствие компенсаторных движений плавников. Одновременно с различными в том и другом случае компенсаторными движениями плавников происходит соответственно или резорбция или секреция газа в плавательном пузыре (Пучков Н.В., 1954).

Плавательный пузырь помогает рыбе находиться на определенной глубине – той, на которой вес вытесняемой рыбой воды равен весу самой рыбы. Благодаря плавательному пузырю, рыба не тратит дополнительную энергию на поддержание тела на этой глубине.

Рыба лишена возможности произвольно раздувать или сжимать плавательный пузырь. Но зато в стенках пузыря есть нервные окончания, посылающие сигналы в мозг при его сжатии и расширении. Мозг же на основании этой информации отправляет команды исполнительным органам – мышцам, с помощью которых рыба осуществляет движение (www.fishingural.ru).

У некоторых рыб плавательный пузырь несет еще другие функции. Так, например, у карпов имеется своеобразное подвижное соединение между плавательным пузырем и лабиринтом посредством веберовских косточек. Передний отдел плавательного пузыря карпов эластичен и при изменениях атмосферного давления может сильно расширяться. Эти расширения затем предаются на веберовские косточки, а с последних на лабиринт.

Подобные соединения имеются у сомов и особенно выступают у гольцов, у которых весь задний отдел пузыря утерян, равно как и его гидростатическая функция; пузырь при этом заключен в костную капсулу. От кожи с обеих сторон тела тянутся закрытые снаружи перепонкой, наполненные лимфой, каналы и подходят к стенкам плавательного пузыря в том месте, где он свободен от костной капсулы. Изменения давления передаются от кожи через каналы и плавательный пузырь, а от последнего через веберовский аппарат лабиринту. Таким образом, это устройство похоже на барометр анероид, и функцией плавательного пузыря в первую очередь является восприятие изменения атмосферного давления.

У большинства рыб дыхательная функция пузыря не играет значительной роли. То количество кислорода, которое имеется в плавательном пузыре у линей и карпов, как показывают расчеты, могло бы лишь в течение 4 минут покрыть нормальную потребность рыбы в этом газе и, таким образом, не может иметь практического значения для дыхания. Но у некоторых рыб дыхание с помощью плавательного пузыря приобретает важную роль. К подобным рыбам относится, например, собачья рыба (Umbra crameri) , встречающаяся в Европе в районе рек Дуная и Днестра. Она способна обитать в бедной кислородом воде канав и болот. Если этой рыбе находящейся в обычной воде с растениями, воспрепятствовать выходу на поверхность и лишить ее возможности захватывать атмосферный воздух, она погибает от удушья приблизительно через сутки. Опыты показали, что собачья рыба во влажном воздухе без воды может оставаться живой до 9 часов, тогда как в прокипяченной и бедной кислородом воде она погибает уже через 40 минут, если препятствовать захватыванию ею воздуха из атмосферы. Если позволить ей подниматься к поверхности, то содержание в прокипяченной воде собачья рыбка переносит без вреда для себя и только чаще, чем обычно, захватывает воздух.

Наиболее ярко выражено воздушное дыхание у двоякодышащих рыб, которые вместо плавательного пузыря имеют настоящие легкие, очень сходные по своему устройству с легкими амфибий. Легкие двоякодышащих состоят из множества ячеек, в стенках которых расположены гладкие мышцы и обильная сеть капилляров. В отличие от плавательного пузыря, легкие двоякодышащих (а также многоперых) сообщаются с кишечником с его брюшной стороны и снабжаются кровью от четвертой жаберной артерии, в то время как плавательный пузырь прочих рыб получает кровь из кишечной артерии (Пучков Н.В., 1954).

Вопрос №24.

ЗЕМЛЯНЫЕ ПЛОТИНЫ И ДАМБЫ.

Плотины возводят для задержания и подъема уровня воды. Ими перегораживают русла рек, оврагов и балок. Плотины бывают земляные, бетонные, каменные и др. В рыбовод­ных хозяйствах строят в основном земляные плотины с креплени­ем или без крепления откосов. При проектировании плотины ус­танавливают размеры ее основных элементов: ширину гребня, превышение гребня над нормальным подпорным уровнем, укло­ны откосов. Головную плотину строят такой высоты, при которой образуется головной пруд с объемом воды, гарантирующим удов­летворение потребностей хозяйства при постоянном расходе воды. Створ плотины выбирают в наиболее узком месте поймы с плотным водонепроницаемым грунтом, где нет выхода родников и ключей. Ширину гребня плотины определяют, исходя из усло­вий эксплуатации сооружения, но не менее 3 м.

Дамбы возводят при строительстве пойменных прудов. В зави­симости от назначения они бывают контурные, водооградительные и разделительные. Контурные дамбы обваловывают террито­рию поймы, где размещены рыбоводные пруды. Они предназначе­ны для защиты прудов от паводковых вод. Разделительные дамбы устраивают между двумя смежными прудами. Для защиты терри­тории рыбхоза от затопления строят водооградительные дамбы.

В процессе эксплуатации земляные плотины и дамбы могут де­формироваться и разрушаться. Наибольшую опасность при этом представляют фильтрация и накат волны, вследствие чего могут произойти прорывы, оползни и другие разрушения. При сильных волнах откос плотины со стороны господствующих ветров может разрушаться и его дополнительно защищают специальными креп­лениями. Для крепления верховых откосов плотин головных и на­гульных прудов используют сборные и монолитные железобетон­ные плиты и другие крепления. Железобетонные плиты на откосы плотин и дамб укладывают, как правило, при строительстве или реконструкции прудов. Хорошо защищают дамбы и плотины от волн и размыва растущие в прибрежной части прудов тростник и камыш. Верхнюю часть верхового откоса и низовой откос обычно засевают травами (Привезенцев Ю. А., Власов В. А., 2004).

Плотина имеет два откоса – мокрый, обращенный к воде, и противоположный ему – сухой. Уклон откосов зависит от высоты плотины и качества грунта, из которого построена плотина. Мокрый откос устраивают двойным, а у больших плотин головных прудов даже тройным (т. е. основание откоса в 2-3 раза больше его высоты). Для летних категорий прудов мокрый откос лучше строить более пологим, так как он создает мелководную зону, богатую пищевыми организмами для рыб, а в зимовальных прудах этот откос должен быть, наоборот, более крутым во избежание сокращения площади зимовального пруда. Для предохранения от размыва откосы покрывают дерном, высевают на них травы, а в крупных прудах мокрый откос замащивают камнем, укрепляют плетневыми матами, стенками из плетня и т. п. Посадка деревьев на плотинах недопустима, так как корни разрушают плотину, крона затеняет поверхность воды, а листья загрязняют пруд. Кроме того, деревья привлекают к прудам птиц и других врагов рыб.

Продолжительность службы гидротехнических сооружений значительно повышается при правильном и систематическом уходе за ними (moyaribka.ru).

При сильных волнобоях откос плотины со стороны господству­ющих ветров дополнительно защищают специальными крепления­ми. Для крепления верховых откосов плотин нагульных и головных прудов используют железобетонные плиты, хворостяные крепления (Грищенко Л.И., 1999).

Лучший грунт для сооружения плотин и дамб – суглинок со значительной примесью песка. Если использовать только глину, то она при замерзании и последующем оттаивании трескается и пучится. Кроме того, она легко размывается от сильных дождей или в весенний паводок. Плотина, сложенная только из одного песка, фильтрует воду. Не годятся илистые грунты и черноземы, так как они легко размываются и плохо утрамбовываются.

Участок под дамбу или плотину необходимо предварительно подготовить. Для этого следует снять весь растительный слой (дерн), удалить пни, кустарник, деревья и их корни. Если грунт в этом месте сильно фильтрует воду, то роют траншею по оси будущей плотины, углубляясь до более твердого грунта. Траншею заполняют жидкой глиной и тщательно трамбуют (рис. 3).

Рисунок 3 – Устройство плотины с замком: 1 – плотина; 2 – замок

Осадка грунта земляных плотин и дамб обычно составляем 10-15 % общего объема насыпи, но может быть и больше – до 50%, если используется торф. Это надо учитывать при планировании высоты сооружения. Плотина должна возвышаться над уровнем воды на 0,7-1,0 м, дамбы – на 0,3-0,5 м. Гребень плотины должен быть шириной не менее 0,5 м. Чтобы в процессе эксплуатации земляные плотины и дамбы не разрушались, их желательно укрепить (Привезенцев Ю. А., 2000).

Вопрос №49.

ХАРАКТЕРИСТИКА КОМБИКОРМОВ.

Комбикорм – это многокомпонентная смесь различных кор­мовых средств, составленная по научно обоснованным рецептам для обеспечения полноценного кормления животных.

Использование гранулированных комбикормов, совершенствование их качества и водостойкости являются важнейшим источ­ником уменьшения затрат кормов при выращивании рыбы и по­вышения себестоимости продукции.

Комбикорма изготовляют для различных видов рыб, выращи­ваемых в аквакультуре, с учетом их возраста, массы и метода выра­щивания. При создании рецептов комбикормов используют нор­мы физиологической потребности рыб в энергии, питательных и биологически активных веществах (Привезенцев Ю. А., Власов В. А., 2004).

В настоящее время приняты следующие нормативы по питатель­ности и качеству комбикормов для рыб (табл. 1).

Таблица 1 – Количество основных питательных веществ и показатели качества кормов для прудовых рыб, %

Питательные вещества

Радужная форель

сего­летки

товарная рыба

сего­летки

товарная рыба

Сырой протеин

Сырой жир

Безазотистые экстрактивные вещества (БЭВ)

Клетчатка

Энергетическая ценность, тыс. кДж/кг

Йодное число, % йода, не более

Кислотное число, мг КОН, не более

В соответствии с этими требованиями разработаны рецепты комбикормов для разных возрастных групп карпа, радужной форе­ли, канального сома, бестера. По своему назначению они делятся на стартовые (для личинок и мальков) и продукционные (для старших возрастных групп).

Таблица 2 – Характеристика комбикормов (Привезенцев Ю. А., Власов В. А., 2004).

Массовая доля влаги, %, не более

Массовая доля сырого протеина, %, не ниже:

стартовые комбикорма (карп, выращенный в индустриальных

условиях, лососевые, канальный сом) для осетровых

комбикорма, используемые при прудовом выращивании:

сеголетков, ремонтного материала и производителей карпа

товарных двухлетков, трехлетков карпа

комбикорма при индустриальном методе выращивания карпа

комбикорма при выращивании ценных видов рыб

Массовая доля сырого жира для карпа и других ценных видов рыб при индустриальном методе выращивания, %

без добавок жира

с добавками жира

Массовая доля углеводов, %, не более:

стартовые комбикорма для карпа, выращиваемого в индустриальных условиях

стартовые комбикорма для лососевых

стартовые комбикорма для осетровых

Массовая доля клетчатки, %, не более:

стартовые комбикорма дня рыб

продукционные комбикорма для рыб

продукционные комбикорма для сеголетков, ремонтного молодняка и производителей

продукционные комбикорма для товарных двухлетков и трехлетков

Массовая доля кальция для всех видов рыб, %, не более:

стартовые комбикорма

продукционные комбикорма

Массовая доля фосфора, %, не более:

стартовые комбикорма для ценных видов рыб

продукционные комбикорма для ценных видов рыб

стартовые комбикорма для карпа

Водостойкость гранул, мин. не менее

Кислотное число комбикорма, мг КОН, не более

Сроки хранения, мес, не более:

комбикорм для карпа, выращиваемого в прудах:

с введением антиокислителя

без антиокислителя

комбикорм для выращивания рыб в индустриальных условиях:

без добавки жира

с добавками жира

Требования к стартовым кормам отличаются от требований к продукционным повышенным содержанием в них протеина (не менее 45%), жира, энергетической ценностью, а также большей сбалансированностью по аминокислотному составу, витаминам, микроэлементам и другим добавкам (табл.2). Более высокие требования предъявляют в кормам для рыб, выращиваемых в садках и бассей­нах, так как в них рыба практически лишена естественной пищи (Грищенко Л.И., 1999).

Каждому рецепту комбикорма присваивают номер. Согласно Инструкции по приготовлению комбикормов для рыб установле­ны номера со 110-го по 119-й. Вместе с тем существуют модифи­кации временных рецептур.

В последнее время особое внимание стали уделять производ­ству профилактических (лечебных) кормов, содержащих природ­ный энтеросорбент и новые эффективные отечественные пробиотики, которые, с одной стороны, обезвреживают токсиканты, с другой – заселяют организм рыб бактериями – антагонистами патогенных микроорганизмов, возбудителей многих инфекцион­ных болезней рыб (Привезенцев Ю. А., Власов В. А., 2004).

Основные корма, которые используются при приготовлении комбикормов для карпа, представлены в таблице 3.

Таблица 3 – Соотношение ингредиентов в комбикормах для карпа, выращиваемого в прудах, % (Власов, В.А., Скворцова, Е.Г., 2010).

Ингредиенты

Для сеголеток и

производителей

Для двухлеток

1) Жмыхи и шроты (не менее 2 видов)

2) Зерновые:

злаковые

3) Отруби

4) Дрожжи

5) Корма животного происхождения

6) Травяная мука

7) Минеральные добавки

8) Стимуляторы роста

Рыбные комбикорма готовят в виде крупки (стартовые), гранул разного диаметра в соответствии с возрастом рыб, а также тестооб­разные . Гранулированные корма производят в основном централи­зованно на комбикормовых заводах, а тестообразные – непосред­ственно в рыбхозах. Для карповых рыб используют тонущие, а для лососевых рыб – плавающие корма (водостойкость их составляет около 10-20 мин). Лучшие рецепты отечественных и зарубежных рыбных комбикормов содержат до 9-12 различных компонентов, не считая добавок витаминов, минеральных солей и др. В них вхо­дят животные корма, корма растительного происхождения, продук­ты микробиологического синтеза, премиксы, ферментные препа­раты, антиоксиданты, антибиотики (Грищенко Л.И., 1999).

Грану­лированные комбикорма подразделяют на стартовые и продукционные . Их изготовляют в виде крупки и гранул. Крупка предназначена для кормления рыбы от личинок до сеголетков массой 5 г, гранулы – для сеголетков, годовиков, двухлетков, трехлетков, ремонтного материала и производителей. В зависимости от размера крупку и гранулы подразделяют на 10 групп (табл. 4).

Таблица 4 – Характеристика кормов для рыб

Диаметр, мм

Масса рыб, г

лососевые

осетровые

До 0,2 (крупка)

0,2–0,4 (крупка)

0,4–0,6 (крупка)

0,6–1,0 (крупка)

1,0–1,5 (крупка)

1,5–2,5 (крупка)

3,2 (гранулы)

4,5 (гранулы)

6,0 (гранулы)

8,0 (гранулы)

Гранулы могут быть круглыми, цилиндрическими, плас­тинчатыми или любой другой формы. Наряду с различной формой они имеют неодинаковую плотность. Одни гранулы плавают на поверхности воды, другие погружаются на кормовые места. Обыч­но плавающие комбикорма применяют при выращивании рыб в садках, поскольку считается, что погружающиеся корма могут пройти через дно или стенки садков. Такие корма можно приме­нять в рыбоводных установках с замкнутым циклом водоснабже­ния, где можно контролировать процесс и полноту потребления заданного корма. Это дает возможность, если рыбы отказываются от корма, поставить правильный диагноз и создать необходимые условия для предотвращения гибели рыб (Привезенцев Ю. А., Власов В. А., 2004).

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

Обитание в воде неизбежно накладывает отпечаток на строение тела рыб. Не только общий план строения, но и многие системы органов, призванные обеспечить жизнедеятельность рыб в водной среде, по своему строению, а иногда и по принципам функционирования, отличаются от подобных у наземных животных. Есть и те, которые являются уникальными, то есть не встречающимися у представителей других групп позвоночных животных.

Среди проблем, которые стоят перед водными организмами в целом и перед рыбами в частности, одной из первых по значимости является проблема удержания в толще воды. Проще говоря, перед рыбами встает вопрос "как не утонуть?" Действительно, плотность тела рыб, как и большинства позвоночных животных, превышает плотность воды , варьируя для разных видов в пределах 1,07 - 1,12. Таким образом, они должны были бы иметь отрицательную плавучесть, а значит тонуть в воде, однако мы знаем, что этого не происходит. В процессе эволюции разные группы рыб выработали ряд приспособлений, которые позволяют им компенсировать отрицательную плавучесть. Одни группы рыб пошли по пути снижения общей плотности тела за счет увеличения объема тканей с невысокой плотностью, например, жировой ткани, другие приобрели специализированный орган - плавательный, или газовый, пузырь. О его строении и функционировании и пойдет речь в этом посте.

Расположение плавательного пузыря в теле рыб

Итак, классическое определение плавательного пузыря следующее:

Плавательный пузырь представляет собой заполненный газом вырост передней части кишечника, основной функцией которого является обеспечение плавучести рыб.

В этом определении стоит обратить внимание на два момента. Во-первых, на то, что в нем ничего не сказано про положение выроста - несмотря на то, что у подавляющего большинства видов он дорсальный, то есть закладывается со спинной стороны тела (что иногда и отмечается в определении плавательного пузыря). Однако так происходит не у всех групп рыб - у небольшого числа таксонов это вентральный вырост. Во-вторых, на словосочетание "основная функция" со смысловым ударением на "основная" - плавательный пузырь может выполнять множество различных функций, и гидростатическая у разных групп рыб не является единственной, а иногда и основной. Подробнее об этом я расскажу ниже.

Плавательный пузырь в разных группах рыб

Прежде всего, напомню, что мы определили, что рыбами называют сборную группу водных позвоночных животных, которые на протяжении всей своей жизни имеют жабры, а для движения используют конечности плавникового типа. Как видите, ничего о плавательном пузыре, как неотъемлемой характеристике рыб в этом определении не сказано. Почему так произошло, ведь плавательный пузырь не встречается в других группах животных и характерен только для рыб? Ответ прост - дело в том, что этот орган имеют, во-первых, не все группы рыб, а, во-вторых, даже в тех группах, для которых он свойственен, есть виды, утратившие его в процессе эволюции как более ненужный орган.

Основные современные крупные таксоны рыб в отношении наличия/отсутствия плавательного пузыря и выполняемым им функциям характеризуются следующим образом:

Круглоротые (миноги и миксины) - плавательный пузырь отсутствует
Хрящевые (акулы, скаты, химеры ) - плавательный пузырь отсутствует
Целокантообразные (латимерия) - плавательный пузырь редуцирован
Двоякодышащие - имеется, орган дыхания
Многоперовые - имеется, орган дыхания
Хрящевые ганоиды (осетрообразные) - имеется, гидростатический орган
Костные ганоиды - имеется, орган дыхания
Костистые рыбы - имеется, у некоторых редуцирован, гидростатический орган, у небольшого числа видов орган дыхания

Плавательный пузырь и легкие наземных позвоночных

Из приведенного выше обзора можно обнаружить интересную тенденцию - у эволюционно более древних групп рыб плавательный пузырь является органом дыхания, и только у более современных групп он приобретает функцию гидростатического органа. Чтобы понять логику этих преобразований, необходимо обратиться к биологии ныне живущих представителей древних групп рыб и их ископаемых предков. Ныне живущие виды населяют, как правило, слабо проточные, застойные или даже пересыхающие водоемы, в которых не редко встречаются с проблемой недостатка растворенного в воде кислорода. Подобные же условия существовали в водоемах девонского периода (около лет назад), когда эволюционировали их предки. Такие условия вынуждали рыб искать иные источники кислорода. Единственным таким источником был атмосферный воздух, который эти формы могли заглатывать с поверхности воды и затем "усваивать" в передней части кишечника. Как мы знаем, эффективность этого усваивания тем выше, чем через большую площадь оно идет - именно это направляло эволюцию по пути увеличения сначала объема передней части кишечника, что привело к появлению отдельного выроста, а затем и к увеличению площади его поверхности. Конечным результатом этих процессов стало появление легкого наземных животных, происхождение которого по современным представлениям связано с эволюцией плавательного пузыря при выходе на сушу. Таким образом, ответом на вопрос "что же было первично в функциональном плане легкое или плавательный пузырь" является "легкое" – по-видимому, именно респираторная (дыхательная) функция предшествовала гидростатической.

Обыкновенный карп

Интересно, что приобретение плавательного пузыря, выполняющего функцию дыхания, происходило в разных группах рыб независимо. Такой вывод можно сделать при сравнении его положения относительно пищеварительной трубки, например, у многоперовых и костных ганоидов, что демонстрирует нам два различных пути образования плавательного пузыря. У многопера плавательный пузырь представляет собой вентральный (расположенный к брюху от пищеварительного тракта) вырост, в то время как у костных ганоидов (панцирная щука, амия), предки которых вероятно эволюционировали в ту же эпоху что и предки многоперовых, этот вырост расположен дорзально. У обеих групп сохраняется связь плавательного пузыря с кишечником посредством специального канала, который имеет такое же расположение что и вырост - у многопера вентральное, у костных ганоидов дорзальное. В остальном эти структуры схожи. Плавательный пузырь многопера напоминает легкое наземных животных и считается наиболее примитивно устроенным. Это двухлопастной вырост, внутренняя поверхность которого имеет практически гладкую структуру с небольшим количеством складок. У костных ганоидов плавательный пузырь также двухлопастной, но его внутренняя поверхность имеет множество гребней для увеличения поверхности, через которую может идти проникновение кислорода. Еще в одной древней группе рыб - ископаемых Мясистолопастных и у их ныне живущего потомка Латимерии - плавательный пузырь формировался как вентральный вырост кишечника. Необходимо также отметить сходство положения плавательного пузыря мясистолопастных и легкого наземных позвоночных, которое также расположено вентрально. Это сходство не является совпадением - именно мясистолопастные совершили революцию в животном мире, выйдя на сушу и дав начало всей наземной позвоночной жизни.

Ранняя эволюция плавательного пузыря

Постепенно с изменением древнего климата и освоением рыбами океана дыхательная функция плавательного пузыря утрачивалась и на первое место выходила гидростатическая. Как мы помним, у всех современных групп костистых рыб за небольшим исключением, плавательный пузырь - дорзальный непарный вырост. Такое его положение выгодно отличается от вентрального, потому что в первом случае дорзального расположения центр тяжести тела смещен вниз, что делает положение тела в водной среде более стабильным. Несомненно, что у большинства современных рыб плавательный пузырь эволюционировал из дорзального выроста, который был у их предков. Однако, также не находит значительных противоречий и гипотеза, что у ряда групп плавательный пузырь мог "переползти" с брюшной стороны на спинную. Самое замечательное, что этот процесс мы можем наблюдать у некоторых современных видов, у которых строение плавательного пузыря промежуточное между дорзальным и вентральным расположением. Так у рыб рода Erythrinus пузырь хоть и расположен дорзально, но соединен протоком, отходящим от боковой части кишечника. Еще более интересное строение мы наблюдаем у двоякодышащей рыбы Neoceratodus, у которой плавательный пузырь также расположен дорзально, но соединяющий его с кишечником канал отходит от вентральной части пищеварительной трубки и заворачивается к верху, огибая кишечник. При этом наблюдается и "заворачивание" всей системы - кровоснабжающие сосуды и нервы идут сначала вниз, затем под кишечником и только после этого снова идут вверх к плавательному пузырю.

Наглядно различные варианты положения плавательного пузыря рыб представлены на рисунке ниже.